
NAAICE API for
RMA-Basic-Communication

Florian Mikolajczak, Max Schrötter, Bettina Schnor
NAAICE AP1 (E1.B)

University of Potsdam

Contents

1 Introduction 2

2 Host-NAA Communication Protocol 3

3 API 12
3.1 Client API . 17
3.2 Software-NAA API . 27

1

1 Introduction

This documentation concerns the low-level API, which is used a basis for remote direct
memory access (RDMA) based communication between an HPC node and a network
attached accelerator (NAA) on a field programmable gate array (FPGA). As part of the
NAAICE project, RDMA communication between the two is used to facilitate fast data
transfer for the offloading of specific calculations. The offloading of specific calculations
onto an NAA can lead to a reduction in overall runtime and energy consumption of a
given HPC job.
The API is written in C and makes use of two libraries for user-space based RDMA com-
munication. These libraries are libibverbs and librdmacm, which are both part of the
rdma-core library. libibverbs and librdmacm are implementations of the Infiniband
standard. Within the project, the used network protocol is RoCEv2 (RDMA over Con-
verged Ethernet 2). RoCEv2 encapsulates Infiniband packets within UDP/IP packets,
thus making them routeable within an IP-based HPC center. libibverbs provides the
functionalities for setting up Infiniband communication structures, queue pairs (QP), as
well as other structures such as queues for sending and receiving operations as well as
a completion queue, where finished operations are noted. It encapsulates operations
for sending and receiving messages or data in a two-sided (IBV_SEND/IBV_RECV) or
one-sided IBV_WRITE/IBV_READ style. librdmacm provides a method for setting up an
Infiniband-based connection.

As a short introduction, the key structures and components of an Infiniband connection
will be discussed. The reader is referred to the Infiniband standard for more detailed
introduction [2]. Chapter 3 of the standard gives a broad introduction to the overall ar-
chitecture. Generally, knowledge of socket-based communication is assumed, but can be
found in [3]. In Infiniband communication, queue pairs (QPs) are analogous to sockets.
Communication operations include two-sided ones like SEND and RECEIVE operations.
These explicitly synchronize the two communication partners and a SEND operations
cannot be done before the receiving side issues a RECEIVE. Additionally, one-sided com-
munication is available as well, using WRITE or READ operations, as well as ATOMICS.
These one-sided operations are also known as remote direct memory access operations
(RDMA), since the CPU or user-space application on the receiving side is not involved
in the communication. A schematic of RDMA operations as they will be used within
the NAAICE project using RoCEv2 is shown in figure 1.

All communication requests are handled using work queues. These make up the afore-
mentioned queue pairs. The different queues are: send queues and receive queues as
well as completion queues. Send and receive queues are used to post work requests that
will be handled by the network interface card (NIC). Finished work requests (or failures)
are reported in the completion queue. Additionally, memory buffers that are used for
the transfer of data exist. These are called memory regions. Memory regions have to
be allocated and registered to the device. After registration, the NIC can access these
buffers without involvement of the CPU, a prerequisite for RDMA operations. Memory
regions are identified by an address and length. Accessing memory regions is restricted
through a set of a local and remote key (rkey, lkey). A memory region can be split
into different memory windows (MW) with their own keys. Many memory regions can
be associated with a single queue pair. As an overarching structure, protection domains
also exist. This structure combines memory regions and queue pairs and is used to

2

provide a mechanism for access management. A memory region is registered to a pro-
tection domain and a queue pair allocated to a protection domain. Any given key set
of a memory region is only valid on queue pairs from the same protection domain [2,
p. 107]. Figure 1 summarizes the relationship of the different components of an Infini-
band connection. All features mentioned above except memory windows are used so
far within the API for AP 1.

2 Host-NAA Communication Protocol

Prior to implementing a low-level API, the communication pattern between an HPC
node and an NAA was discussed and explored. For this, a communication sequence
diagram was created by HHI, ZIB and UP. Within discussions for the communication
sequence diagram, a protocol for exchanging memory region metadata was designed
as well. The sequence diagram is shown in figure 2. The communication between
the HPC node and the NAA on the FPGA is analogous to the general client-server
model. The HPC node acts as the client and initiates the connection. By transferring
data and a function code (AP 2), it also initiates calculations on the FPGA in the style
of an asynchronous RPC. The FPGA takes on the role of the server, waits for connection
requests and responds to an RPC with the result data. The communication can be
split up in four different sections: The connection establishment, the setup of memory
regions, the data transfer and the connection termination.

Connection Establishment

The connection management is handled by functions from the library librdmacm. Much
like in TCP, connection establishment is done by a three-way handshake. The client
sends a connection request (REQ), to which the server replies with a Reply message REP.
Finally, the connection is fully established with a Ready-to-Use (RTU) message by the
client. Other message types for unsuccessful connections can be found in the Infiniband
Standard chapter 12.6 [2]. All message types for connection establishment defined in
the Infiniband standard are also implemented on the FPGA. During AP1 the IP address

Figure 1: Schematic figure of RDMA communication between two hosts. As in the
source code for AP 1, one host takes on the role of a RoCE client, initiating
a connection as depicted in figure 2 and requesting the calculation of a given
problem by the RoCE server in an RPC-like manner through the transfer of
input data. The data structures within the memory, e.g. memory regions are
registered to the NIC, such that no CPU involvement is necessary during the
data transfer.

3

of the server is a user argument for the client program. The server listens for connection
requests on a specific and known port. In future developments, the user can ask the
resource management system of the computer center for an FPGA with the desired
capabilities and will receive information on its IP address and the port number for
connection establishment.

Memory Region Setup Protocol (MRSP)

Before data can be transferred, meta information about the memory regions, i.e., buffers
registered to the NIC, has to be exchanged. Within the project, a protocol for memory
region setup has been developed. Generally, the client announces memory regions for
the transfer of results from the server to the client and requests memory regions on the
server for its input data. The advertisement for a memory region includes the address
of the region as well as the length and the remote key for access control. The request for
a memory region includes a valid physical FPGA address, the size and memory region
flags. These are unused so far, but can in the future be used to request regions on the
FPGA that will not be used for data transfer.
The MRSP is done using two messages. All memory regions are announced and re-
quested by the client in one message. The server than handles this announcement and
request and returns the virtual addresses and rkeys for the requested memory regions
in a single message back to the client.

Earlier versions of the MRSP exist: First, a static approach was used. A single memory
region is announced through a single message and the amount of requested memory
on the server is requested through one single message as well. With this approach, the
number of messages scales linearly with the amount of memory regions to exchange,
requiring n advertisements and 1 request from the client and n advertisements from
the server. As a second approach, a dynamic exchange of memory regions was de-
veloped. Herein, all announced memory regions are sent within a single message of
variable size. Thus, both communication partners can announce the meta-information
for all registered memory regions in one message per direction (excluding acknowledge-
ments). Within the same message or another message type, the HPC node also requests
an amount of memory to be registered in the server for data transfer. The different
message types will be discussed in detail in the next section. The server then responds
with the advertisement for the memory region(s) it has allocated in accordance with the
overall size requested by the client. Therefore, the exchange of memory regions is done
in 2 messages (excluding acknowledgements) regardless of the number of requested
memory regions.

In another update, the user now announces host memory regions and FPGA memory
regions of the same size in the same message. This is necessary, since the memory
management of the FPGA will be outsourced to a service of the resource management
system (RMS) or compute cluster. The user will receive valid FPGA memory addresses
through this service and request these addresses on the FPGA. The current implemen-
tation might change in the future, based on the performance of different data transfer
styles. This if further discussed in section 2.
The communication pattern for the exchange of memory region information is two-
sided. Thus, IBV_SEND operations are used, for which a prior IBV_RECV work request
has to be posted by the receiver. If the receiver has not posted such a request, the transfer
will not work. Depending on the configuration, the sender will retry the transfer a

4

Host FPGA
REQ

REP

RTU

IBV_SEND: MR Request + MR Advertisement

Ack

IBV_SEND: MR Advertisement

Ack

single message can hold mul-

tiple MRs

C
on

ne
ct

io
n

Es
ta

bl
is

hm
en

t
M

R
SP

IBV_WRITE: Input Data opt. in case multiple WRITE

operations are necessary

IBV_WRITE_WITH_IMM: Input Data
RPC-like, signals end of data

transfer, facilitates synchro-

nizationAck

D
at

a
Tr

an
sf

er
I

Calculation

IBV_WRITE: Results opt. in case multiple WRITE

operations are necessary

IBV_WRITE_WITH_IMM: Results

Ack

signals end of data transfer,

facilitates synchronization

D
at

a
Tr

an
sf

er
II

DREQ

DREP

C
on

ne
ct

io
n

Te
rm

in
at

io
n

Figure 2: Communication sequence diagram between an HPC node and an NAA on an
FPGA. The communication pattern was designed as part of AP 1. The com-
munication follows a server-client model, where the HPC node is the initiating
client. The FPGA takes on the role of the server and responds to the con-
nection. Similarly, the communication is RPC-like, where the end of the data
transfer signals the FPGA that calculation or work on the request can now be-
gin. In the reverse direction, the end of data transfer back to the client signals
the end of the RPC. The actual synchronization is explicitly facilitated by the
RDMA operation used: IBV_WRITE_WITH_IMM.

number of times after a short pause. Note, that unsuccessful transfers are not easily
spotted in network traffic recorded by tools like wireshark. In any case, the receiver
will respond with an ack message. However, in unsuccessful transfers the ack-specific

5

header includes a syndrome value of 32 instead of 0 for successful transfers.

Message Types

For the new memory setup protocol, specific message types were defined. This doc-
ument limits itself to most recent implementation including the message type of the
dynamic memory region setup protocol with FPGA addresses. The memory exchange
protocol requires a total of 3 different messages so far.

• 0x00 Error
A generic message including an error code to communicate errors during the
MRSP.

• 0x01 Advertisement and Request
Used by the client to announce its memory regions and request a specific amount
of memory on the server

• 0x02 Advertisement
Used by the server to announce its memory regions after a request. Note: This
message type could also be used by the client, requiring a specific request message. This is
already defined, but not used.

All messages share a similar structure as shown below:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+- -
| Type | Type-Specific Data ...
+-+-+-+-+-+-+-+-+- -

where type denotes the message types defined in the list above.
An Advertisement and Request message can include up to 256 memory regions, limited
only be the count variable, which indicates the number of announced memory regions.
This variable has 8 bits but can be expanded to use up to 24 bits (including 16 bits now
used for padding). However, the current limit of 256 memory regions to be exchanged
vastly outnumbers the amount of memory regions the FPGA can handle. In the current
implementation, the FPGA is only able to handle up to 32 memory regions. Note: For
regular compute nodes using ibverbs, the amount of memory available for registra-
tion is hardware-specific as well. The size of a single memory region is limited by the
Infiniband standard to a maximum of 1 GB.

Advertisement and Request Message
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 0x01 | Count = N | Padding |
+-+
| MR Flags | Requested |
+-+-+-+-+-+-+-+-+ +
| FPGA address 1 |
+-+
| |

6

+ Published Addr 1 +
| |
+-+
| Published RKey 1 |
+-+
| Published Size 1 |
+-+
. .
.
. .
+-+
| MR Flags | Requested |
+-+-+-+-+-+-+-+-+ +
| FPGA address N |
+-+
| |
+ Published Addr N +
| |
+-+
| Published RKey N |
+-+
| Published Size N |
+-+

The Advertisement and Request message includes the metadata for each memory region
to be announced, i.e. the starting address, size and the remote key, which needs to be
included in each RDMA request later on. The Advertisement message is a part of the
Advertisement and Request message, excluding the request part and is, up to now,
solely used by the RDMA server. Its structure is depicted below:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 0x02 | Count = N | Padding |
+-+
| |
+ Published Addr 1 +
| |
+-+
| Published RKey 1 |
+-+
| Published Size 1 |
+-+
. .
.
. .
+-+
| |
+ Published Addr N +

7

| |
+-+

Lastly, the error message only includes an error code:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 0x00 | Error Code | Padding |
+-+

The 8-bit variable allows 256 different error codes and can be extended if more codes
are necessary.

The first set of error codes have already been defined. The error message is self will
only be used for errors related to the exchange of memory region. For the connection
management, messages signaling errors are already included and error handling is part
of the librdmacm library. Error in data transfer are reported in the completion queue
and do not need a specific error messages. Errors during the calculation are reported by
the server as the immediate value within the IBV_WRITE_WITH_IMM message.

The error codes defined for the exchange of memory regions so far are:

• 0x01: Not enough memory available (address + size exceeds the memory bound-
ary)

• 0x02: invalid address (address is out of bounds)

• 0x03: Too many regions requested

Data Transfer (and calculations)

Data transfer occurs twice. First the HPC node sends input data to the NAA. Data will
be using one-sided RDMA operations. If the data transfer can be done in one operation,
i.e. only one MR is transferred, an IBV_WRITE_WITH_IMM (Write with immediate data)
will be used. The immediate data is a 32-bit value that is transferred with the data. This
immediate data is used to transfer the function code, i.e. which calculation is to be done
by the FPGA. If n | n > 1 operations are used, n − 1 IBV_WRITE operations are done and
a single last IBV_WRITE_WITH_IMM. Unlike for simple IBV_WRITE operations, the receiver
has to post a receive work request, as seen above in case of IBV_SEND operations. Using
this, explicit synchronization after the last data transfer between sender and receiver is
done. The communication style of the data transfer is further discussed in section 2.
Next, the NAA does calculations, while the HPC node waits for response. Whether
explicit waiting or polling is used by the HPC node is outside the scope of this document
and will be handled in AP 2. After calculations are done, the FPGA sends results
data back in the same way it received data. Again, the last transfer operation will be
an IBV_WRITE_WITH_IMM, synchronizing both communication partners. An immediate
value of 0 indicates success. Errors are reported with a positive integer as the immediate
value. The error codes defined so far are:

• 0x01: Socket not available

• 0x02: Kernel timeout

8

• 0x03-0x0f: reserved

• 0x10 - 0x7f: Application / calculation errors

Connection Termination

Connection termination is again done through methods provided by librdmacm. The
HPC node (client) sends a disconnect request (DREQ), message to the FPGA (server).
The FPGA replies with a disconnect reply (DREP) message, terminating the connection.
More information on connection management can be found in the Infiniband standard
chapter 12.6 [2]. All message types for connection termination defined in the Infiniband
standard are also implemented on the FPGA.

Data Transfer: Number of Memory Regions

The main goal of the API is to allow the offloading of tasks on to an NAA in an RPC-like
fashion. For this, the data transfer should be as performant as possible. Taking message
overhead into account it can be safely assumed that the performance of fewer and larger
messages is the best. The actual style of the data transfer, i.e. the number and size of
messages sent is dependent on many factors however:

• A single message can only hold 1 GB, which is also the maximum size for a mem-
ory region right now

• There is an overhead for multiple memory regions on the FPGA1.

– The management on the FPGA (e.g. mapping of virtual to physical addresses
and the verification of the rkeys) is easier with a smaller number of memory
regions

– The resource cost (number of registers, amount of memory) for each sup-
ported queue pair scales with the number of regions.

However, the performance of the FPGA with multiple DDR DIMMS (double data
rate dual inline memory modules), will have a faster internal read/write perfor-
mance if multiple memory regions on multiple DIMMS are used.

• From the user perspective, zero-copy data transfer is preferred (at least for large
data chunks), i.e. each RPC parameter should have its own memory region.

At the start we have identified two distinct setups regarding memory regions: A sym-
metric and an asymmetric setup with one memory region on the FPGA. Other asymmet-
ric memory region setups exist e.g. with two memory regions on the FPGA. However,
these only represent intermediate stages between the two outlined border cases. The
symmetric and asymmetric memory region setup with only one memory region on the
FPGA are outlined in Figure 3 and 4. Currently, the symmetric approach is used. Large
parameters receive their own memory region to allow for zero-copy data transfer. How-
ever, smaller parameters will be collected in a single memory region, for which copying
of data on the client side is justifiable. In a later stage of the project, different approaches
will be compared to find the most performant approach.
To justify this setup, a closer look will be taken at the ibverbs-provided semantics

1According to Fraunhofer Heinrich-Hertz-Institute

9

of writing data. Data is written using ibv_post_send(), which takes the associated
queue pair and a list of work requests as paramters. For a detailed look at the pa-
rameters the user is referred to the manpage of ibv_post_send(). Every work request
includes (among other less important parameters) an opcode. For writing data with
RDMA, either an RDMA_WRITE or RDMA_WRITE_WITH_IMM opcode is used. Additionally,
each RDMA write request includes a remote address (to write to) and its accompanying
rkey. Thus, the remote address has to be registered as part of a memory region the re-
mote host as well. The memory to be written to the remote memory region is identified
by a list of scatter-gather-elements (SGEs). Each SGE is made up of a starting address
and its accompanying lkey and the amount of memory to write. Thus, memory to write
to the remote host has to be registered as part of a memory region as well.
When using multiple SGEs, the data is written into contiguous memory on the remote

Figure 3: Schematic figure of symmetric memory region setup host-based client and
an NAA-server. Both have the same amount of memory regions with equal
sizes on both sides. The data is transferred using N operations for N memory
regions.

Figure 4: Schematic figure of asymmetric memory region setup host-based client and
an NAA-server. The NAA only has one large memory region into which ev-
erything must be written. This can be done individually with a known offset
using N operations for N memory regions or in 1 operation (up to 1 GB in
total) using scatter-gather-elements.

10

side and interpreted as one single blob of memory, i.e. the remote is not aware of the
fact that the data comes from different memory regions and might describe different
parameters. Thus, when using SGEs, usually metadata has to be transferred as well for
the remote side to distinguish the original meaning of the data. Additionally, Dotan
Barak (Mellanox/NVIDIA), a main developer of ibverbs as part of the Linux Kernel,
hints that using many SGEs is not performant2. When using multiple SGEs, the NIC
collects the data from the different memory regions and transfers it to the remote side.
It is yet unclear whether this leads to internal copying of data.
Lastly, first experiments suggest that using multiple write operations with multiple
memory regions of 1 MB or larger provide optimal throughput [1]. To summarize,
we use the symmetric approach for now, because:

• It is easier to implement

• The sizes of most parameters of the RPC can be inferred by the memory region
size

• We don’t expect large performance issues

2https://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-your-rdma-code/

11

https://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-your-rdma-code/

3 API

The documentation of the API includes the structures as well as all methods. The API
specifies methods for a client and server. The client is always a host machine, requesting
some RPC to be done on a remote machine. The remote part can be taken on by a host
machine as well, for which we provide software, or any other machine such as an FPGA,
which is compatible with the proposed API. The software for host clients and servers is
modelled as a state machine.

State Machine

A state machine is used to facilitate communication as depicted in Figure 2. Our state
machine is defined with the following states:

enum naaice_communicat ion_state
{

INIT = 00 ,
READY = 01 ,
CONNECTED = 02 ,
DISCONNECTED = 03 ,
MRSP_SENDING = 10 ,
MRSP_RECEIVING = 11 ,
MRSP_DONE = 12 ,
DATA_SENDING = 20 ,
CALCULATING = 21 ,
DATA_RECEIVING = 22 ,
FINISHED = 30 ,
ERROR = 40 ,

} ;

An exemplary flow chart of the state machines for a client and server without errors are
given in Figure 5. Except for CALCULATING, both communication partners run through
all states.

12

Figure 5: Flow chart of the state machine for client and server. An error-free communi-
cation with 1+ RPC invocations is depicted.

13

Structures

Structures for Handling Messages

s t r u c t naaice_mr_hdr {
u i n t 8 _ t type ;
} ;

s t r u c t naaice_mr_dynamic_hdr {
u i n t 8 _ t count ;
u i n t 8 _ t padding [2] ;

} ;
s t r u c t naaice_mr_advert isement_request {

u i n t 8 _ t mrflags ;
u i n t 8 _ t fpgaaddress [7] ;
u i n t 6 4 _ t addr ;
u i n t 3 2 _ t rkey ;
u i n t 3 2 _ t s i z e ;

} ;
s t r u c t naaice_mr_advertisement
{

u i n t 6 4 _ t addr ;
u i n t 3 2 _ t rkey ;
u i n t 3 2 _ t s i z e ;

} ;

s t r u c t naaice_mr_error {
u i n t 8 _ t code ;
u i n t 8 _ t padding [2] ;

} ;

Different structures for the parsing of messages exist. All defined messages have in
common that the first 8 bit signify the message type. All messages but error messages
then include 8 bits for a count variable and 16 bits for padding. An Advertisement and
Request includes the five variables of metadata: 8 bits for MR flags, which signify the
type of MR: regular or FPGA-only; 56 bits for a requested FPGA address, and the ad-
dress (64), rkey (32) and length (32) of the advertised MR. Error messages simply consist
of the error code and padding. The different structures are used in parsing messages
according to the message type.

Memory Region Structures

s t r u c t naaice_mr_peer {
u i n t 6 4 _ t addr ;
u i n t 3 2 _ t rkey ;
u i n t 3 2 _ t s i z e ;

} ;

s t r u c t naaice_mr_loca l {

14

s t r u c t ibv_mr * ibv ;
char * addr ;
s i z e _ t s i z e ;
bool wri te ;

} ;
s t r u c t naaice_mr_interna l {

char * addr ;
u i n t 3 2 _ t s i z e ;

} ;

Three different structures for memory regions exist. Peer memory regions, i.e. those of
the remote host are identified by the address, rkey and size, much like the advertisement
message structure. Local memory region structures consist of a memory region structure
from the libibverbs library and an address pointer and the size (also available via
the ibv_mr member). The memory region structure ibv_mr also includes the local and
remote key and size of the memory region, as well as the address. Local memory regions
also have an associated bool variable that states, whether the given MR will be written
in the next write operation. The different memory regions are available as an array that
is part of the overall communication structure naaice_communication_context, which
holds all information relevant for the communication. Internal memory regions are only
available on the FPGA and are used for storing calculation results/temporary results.

s t r u c t naaice_communication_context
{

/ / B a s i c c o n n e c t i o n p r o p e r t i e s .
s t r u c t rdma_cm_id * id ; / / Communication ID .
s t r u c t rdma_event_channel * ev_channel ; / / Event c h a n n e l .
s t r u c t ibv_contex t * i bv _ c t x ; / / IBV c o n t e x t .
s t r u c t ibv_pd *pd ; / / P r o t e c t i o n domain .
s t r u c t ibv_comp_channel * comp_channel ; / / Comple t i on c h a n n e l .
s t r u c t ibv_cq * cq ; / / Comple t i on queue .
s t r u c t ibv_qp *qp ; / / Queue p a i r .

/ / Current s t a t e .
enum naaice_communicat ion_state s t a t e ;

/ / L o c a l memory r e g i o n s .
s t r u c t naaice_mr_loca l * mr_local_data ;
u i n t 8 _ t no_local_mrs ;

/ / Index i n d i c a t i n g which l o c a l memory r e g i o n i s t h e r e t u r n
r e g i o n .

/ / S e t when t h e r e t u r n a d d r e s s i s s e t , in n a a i c e _ s e t _ m e t a d a t a .
/ / Should be in range [1 , n o _ l o c a l _ m r s] .
u i n t 8 _ t mr_return_idx ;

/ / Array o f p e e r memory r e g i o n s , i . e . i n f o r m a t i o n a b o u t
memory r e g i o n s o f t h e

/ / commuicat ion p a r t n e r .

15

/ / I n c l u d e s on ly symmetr i c memory r e g i o n s , i . e . on ly MRs
r e p r e s e n t i n g p a r a m e t e r s

/ / and not i n t e r n a l MRs used on t h e NAA j u s t f o r c o m p u t a t i o n .
s t r u c t naaice_mr_peer * mr_peer_data ;
u i n t 8 _ t no_peer_mrs ;

/ / Used f o r MRSP.
s t r u c t naaice_mr_loca l * mr_local_message ;

/ / Array o f i n t e r n a l memory r e g i o n s , i . e . i n f o r m a t i o n a b o u t
memory r e g i o n s

/ / on t h e NAA used on ly f o r c o m p u t a t i o n which a r e not
communicated dur ing

/ / d a t a t r a n s f e r .
s t r u c t naaice_mr_interna l * mr_internal ;
u i n t 8 _ t no_internal_mrs ;

/ / Func t i on c o d e i n d i c a t i n g which NAA r o u t i n e t o be c a l l e d .
u i n t 8 _ t fncode ;

/ / Keeps t r a c k o f number o f w r i t e s done t o NAA.
u i n t 8 _ t rdma_writes_done ;

} ;
enum naaice_communicat ion_state
{

INIT = 00 ,
READY = 01 ,
CONNECTED = 02 ,
DISCONNECTED = 03 ,
MRSP_SENDING = 10 ,
MRSP_RECEIVING = 11 ,
MRSP_DONE = 12 ,
DATA_SENDING = 20 ,
CALCULATING = 21 ,
DATA_RECEIVING = 22 ,
FINISHED = 30 ,
ERROR = 40 ,

} ;

Additionally, all ibverbs-specific structures such as the queue pair, and work request
queues are part of the communication context structure. Each communication partner
is modeled as a state machine. This is done since the communication works with events
that signal the current state of the connection, such as establishment of a connection or
the completion of sending/writing operations. All unsigned integer members are used
for internal bookkeeping.

16

3.1 Client API

Setup and Infiniband Work Completions

/ * *
* n a a i c e _ i n i t _ c o m m u n i c a t i o n _ c o n t e x t :
* I n i t i a l i z e s communicat ion c o n t e x t s t r u c t .
* A f t e r a c a l l t o t h i s f u n c t i o n , t h e p r o v i e d communicat ion

c o n t e x t s t r u c t i s
* r e a d y t o be p a s s e d t o a l l o t h e r AP1 f u n c t i o n s .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * * comm_ctx : (r e t u r n param)
* Double p o i n t e r t o communicat ion c o n t e x t s t r u c t t o be

i n i t i a l i z e d .
* Should not p o i n t t o an e x i s t i n g s t r u c t ; t h e s t r u c t i s

a l l o c a t e d
* and r e t u r n e d by t h i s f u n c t i o n .
* uns igned i n t * p a r a m _ s i z e s :
* Array o f s i z e s (in b y t e s) o f t h e p r o v i d e d r o u t i n e

p a r a m e t e r s .
* c h a r * * params :
* Array o f p o i n t e r s t o p a r a m e t e r d a t a . Should be

p r e a l l o c a t e d by
* t h e h o s t a p p l i c a t i o n .
* uns igned i n t params_amount :
* Number o f params . Used t o i n d e x p a r a m _ s i z e s and params , so

t h e i r l e n g t h s
* s h o u l d c o r r e s p o n d t o params_amount .
* u i n t 8 _ t f n c o d e :
* Func t i on c o d e s p e c i f y i n g which NAA r o u t i n e t o be c a l l e d .
* c o n s t c h a r * r e m o t e _ i p :
* S t r i n g s p e c i f y i n g r em ot e a d d r e s s , ex . " 1 0 . 3 . 1 0 . 1 3 5 " .
* u i n t 1 6 _ t p o r t :
* Value s p e c i f y i n g c o n n e c t i o n por t , ex . 12345 .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /

/ * *
* n a a i c e _ h a n d l e _ w o r k _ c o m p l e t i o n :
* Handles a s i n g l e work c o m p l e t i o n from t h e c o m p l e t i o n queue .
* These r e p r e s e n t memory r e g i o n w r i t e s from h o s t t o NAA or NAA

t o h o s t .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*

17

* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t naaice_handle_work_completion (s t r u c t ibv_wc *wc ,

s t r u c t naaice_communication_context * comm_ctx) ;

/ * *
* n a a i c e _ p o l l _ c q _ n o n b l o c k i n g :
* P o l l s t h e c o m p l e t i o n queue f o r any work c o m p l e t i o n s , and

h a n d l e s them i f
* any a r e r e c i e v e d us ing n a a i c e _ h a n d l e _ w o r k _ c o m p l e t i o n .
*
* S u b s e q u e n t l y , comm_ctx −> s t a t e i s upda t ed t o r e f l e c t t h e

c u r r e n t s t a t e
* o f t h e NAA c o n n e c t i o n and r o u t i n e .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c e s s f u l (r e g a r d l e s s o f whe the r any work c o m p l e t i o n s

a r e r e c i e v e d) ,
* −1 i f not .
* /
i n t naaice_pol l_cq_nonblocking (s t r u c t

naaice_communication_context * comm_ctx) ;

/ * *
* n a a i c e _ p o l l _ c q _ b l o c k i n g :
* P o l l s t h e c o m p l e t i o n queue f o r any work c o m p l e t i o n once and

b l o c k s u n t i l any c o m p l e t i o n
* i s a v a i l a b l e . Then i t h a n d l e s them us ing

n a a i c e _ h a n d l e _ w o r k _ c o m p l e t i o n .
*
* S u b s e q u e n t l y , comm_ctx −> s t a t e i s upda t ed t o r e f l e c t t h e

c u r r e n t s t a t e
* o f t h e NAA c o n n e c t i o n and r o u t i n e .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c e s s f u l (r e g a r d l e s s o f whe the r any work c o m p l e t i o n s

a r e r e c i e v e d) ,
* −1 i f not .
* /
i n t naa ice_pol l_cq_b lock ing (s t r u c t naaice_communication_context

18

* comm_ctx) ;
/ * *
* n a a i c e _ i n i t _ r d m a _ r e s o u r c e s
* A l l o c a t e s a p r o t e c t i o n domain , c o m p l e t i o n channe l ,

c o m p l e t i o n queue , and
* queue p a i r .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c c e s s f u l , −1 i f not .
* /
i n t naaice_ in i t_rdma_resources (s t r u c t

naaice_communication_context * comm_ctx) ;

Connection Management

/ * *
* n a a i c e _ p o l l _ c o n n e c t i o n _ e v e n t :
* P o l l s f o r a c o n n e c t i o n e v e n t on t h e RDMA e v e n t c h a n n e l

s t o r e d in t h e
* communicat ion c o n t e x t . I f a c o n n e c t i o n e v e n t i s r e c i e v e d ,

s t o r e s i t
* in t h e p r o v i d e d e v e n t p o i n t e r .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n t o be p o l l e d .
* s t r u c t rdma_cm_event ev : (r e t u r n param)
* P o i n t e r t o e v e n t r e c i e v e d .
*
* r e t u r n s :
* 0 i f s u c e s s f u l (r e g a r d l e s s o f whe the r an e v e n t i s r e c i e v e d) ,

−1 i f not .
* /
i n t naaice_pol l_connect ion_event (s t r u c t

naaice_communication_context * comm_ctx ,
s t r u c t rdma_cm_event * ev ,
s t r u c t rdma_cm_event * ev_cp) ;

/ * *
* c o n n e c t i o n e v e n t h a n d l e r s :
* These f u n c t i o n s e a c h h a n d l e a s p e c i f i c c o n n e c t i o n e v e n t . I f

t h e p r o v i d e d
* e v e n t ’ s t y p e matches t h e e v e n t t y p e o f t h e h a n d l e r f u n c t i o n ,

i t e x e c u t e s

19

* t h e n e c e s s a r y l o g i c t o h a n d l e i t .
*
* S u b s e q u e n t l y , f l a g s in t h e communicat ion c o n t e x t a r e upda t ed

t o r e p r e s e n t
* t h e c u r r e n t s t a t u s o f c o n n e c t i o n e s t a b l i s h m e n t .
*
* The e v e n t s h a n d l e d by t h e s e f u n c t i o n s are , in o r d e r :
* RDMA_CM_EVENT_ADDR_RESOLVED
* RDMA_CM_EVENT_ROUTE_RESOLVED
* RDMA_CM_EVENT_CONNECT_ESTABLISHED
*
* Also , t h e f o l l o w i n g a r e h a n d l e d by n a a i c e _ h a n d l e _ e r r o r :
* RDMA_CM_EVENT_ADDR_ERROR, RDMA_CM_EVENT_ROUTE_ERROR,
* RDMA_CM_EVENT_CONNECT_ERROR, RDMA_CM_EVENT_UNREACHABLE,
* RDMA_CM_EVENT_REJECTED, RDMA_CM_EVENT_DEVICE_REMOVAL,
* RDMA_CM_EVENT_DISCONNECTED.
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n with e v e n t s t o

h a n d l e .
* s t r u c t rdma_cm_event * ev :
* P o i n t e r t o e v e n t t o be c h e c k e d and p o s s i b l y h a n d l e d .
*
* r e t u r n s :
* 0 i f s u c e s s f u l (i . e . e i t h e r t h e e v e n t was t h e match ing t y p e

and was h a n d l e d
* s u c c e s s f u l l y , o r t h e e v e n t was not t h e match ing t y p e) , −1 i f

no t .
* /
i n t naaice_handle_addr_resolved (

s t r u c t naaice_communication_context * comm_ctx ,
s t r u c t rdma_cm_event * ev) ;

i n t naaice_handle_route_resolved (
s t r u c t naaice_communication_context * comm_ctx ,
s t r u c t rdma_cm_event * ev) ;

i n t naaice_handle_connect ion_es tab l i shed (
s t r u c t naaice_communication_context * comm_ctx ,
s t r u c t rdma_cm_event * ev) ;

i n t naaice_handle_error (
s t r u c t naaice_communication_context * comm_ctx ,
s t r u c t rdma_cm_event * ev) ;

i n t naaice_handle_other (
s t r u c t naaice_communication_context * comm_ctx ,
s t r u c t rdma_cm_event * ev) ;

/ * *
* n a a i c e _ p o l l _ a n d _ h a n d l e _ c o n n e c t i o n _ e v e n t :
* P o l l s f o r a c o n n e c t i o n e v e n t on t h e RDMA e v e n t c h a n n e l

20

s t o r e d in t h e
* communicat ion c o n t e x t and h a n d l e s t h e e v e n t i f one i s

r e c i e v e d .
* Simply u s e s t h e p o l l and h a n d l e f u n c t i o n s a b o v e .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c e s s f u l (r e g a r d l e s s o f whe the r an e v e n t i s r e c i e v e d) ,

−1 i f not .
* /
i n t naaice_pol l_and_handle_connect ion_event (

s t r u c t naaice_communication_context * comm_ctx) ;

/ * *
* n a a i c e _ s e t u p _ c o n n e c t i o n :
* Loops p o l l i n g f o r and h a n d l i n g c o n n e c t i o n e v e n t s u n t i l

c o n n e c t i o n s e t u p
* i s c o m p l e t e . Simply u s e s

n a a i c e _ p o l l _ a n d _ h a n d l e _ c o n n e c t i o n _ e v e n t .
*
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not (due t o t i m e o u t) .
* /
i n t naaice_setup_connect ion (s t r u c t naaice_communication_context

* comm_ctx) ;
/ * *
* n a a i c e _ d i s c o n n e c t _ a n d _ c l e a n u p :
* T e r m i n a t e s t h e c o n n e c t i o n and f r e e s a l l communicat ion

c o n t e x t memory .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t naaice_disconnect_and_cleanup (

s t r u c t naaice_communication_context * comm_ctx) ;

21

Memory Region Exchange

/ * *
* n a a i c e _ r e g i s t e r _ m r s :
* R e g i s t e r s l o c a l memory r e g i o n s as IBV memory r e g i o n s us ing

ibv_reg_mr .
* Th i s i n c l u d e s memory r e g i o n s c o r r e s p o n d i n g t o i n p u t and

ou tp ut params ,
* t h e s i n g l e m e t a d a t a memory r e g i o n , and t h e s i n g l e memory

r e g i o n used
* f o r MRSP.
* I f an e r r o r o c c u r s , t h e r em ot e p e e r i s n o t i f i e d v i a

n a a i c e _ s e n d _ m e s s a g e .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n and memory

r e g i o n s .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t n a a i c e _ r e g i s t e r _ m r s (s t r u c t naaice_communication_context

* comm_ctx) ;

/ * *
* n a a i c e _ s e t _ m e t a d a t a :
* S e t s t h e f i e l d s o f t h e m e t a d a t a memory r e g i o n .
* S p e c i f i c a l l y , t h i s s e t s t h e r e t u r n _ a d d r f i e l d , which

s p e c i f i e s which
* memory r e g i o n t h e NAA s h o u l d w r i t e r e s u l t s b a c k t o .
*
* Should on ly be c a l l e d once . Each c a l l t o t h i s f u n c t i o n

o v e r w r i t e s t h e
* p r e v i o u s c a l l .
*
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
* u i n t p t r _ t r e t u r n _ a d d r :
* Address o f memory r e g i o n t o be used as t h e r e t u r n param

f o r t h e RPC .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t naaice_set_metadata (s t r u c t naaice_communication_context

* comm_ctx ,

22

u i n t p t r _ t return_addr) ;

/ * *
* n a a i c e _ s e t _ i n t e r n a l _ m r s
* Adds i n f o r m a t i o n a b o u t i n t e r n a l memory r e g i o n s t o t h e

communicat ion
* c o n t e x t . Such memory r e g i o n s e x i s t on ly on t h e NAA s i d e and

a r e used f o r
* c o m p u t a t i o n . The c o n t e n t s o f t h e s e memory r e g i o n a r e not

communicated
* dur ing d a t a t r a n s f e r .
*
* Must be c a l l e d b e f o r e n a a i c e _ i n i t _ m r s p . The i n t e r n a l memory

r e g i o n s w i l l
* th en be i n c l u d e d in t h e memory r e g i o n announcement message ,

i n d i c a t i n g t h a t
* t h e y s h o u l d be a l l o c a t e d by t h e NAA.
*
* Should on ly be c a l l e d once . Each c a l l t o t h i s f u n c t i o n

o v e r w r i t e s t h e
* p r e v i o u s c a l l .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
* uns igned i n t n _ i n t e r n a l _ m r s :
* Number o f i n t e r n a l memory r e g i o n s .
* u i n t p t r _ t * a d d r s :
* Array o f a d d r e s s e s o f t h e i n t e r n a l memory r e g i o n s in NAA

memory s p a c e .
* These a d d r e s s e s w i l l be r e q u e s t e d o f t h e NAA dur ing MRSP.
* u i n t 3 2 _ t * s i z e s :
* S i z e s o f t h e i n t e r n a l memory r e g i o n , in b y t e s .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t n a a i c e _ s e t _ i n t e r n a l _ m r s (s t r u c t naaice_communication_context

* comm_ctx ,
unsigned i n t n_internal_mrs , u i n t p t r _ t * addrs , s i z e _ t * s i z e s) ;

/ * *
* n a a i c e _ i n i t _ m r s p :
* S t a r t s t h e MRSP. That i s , s e n d s a d v e r t i s e / r e q u e s t p a c k e t s

and p o s t s a
* r e c i e v e f o r t h e r e s p o n s e .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :

23

* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n and memory
r e g i o n s .

*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t naaice_ in i t_mrsp (s t r u c t naaice_communication_context

* comm_ctx) ;

/ * *
* n a a i c e _ s e n d _ m e s s a g e :
* Sends an MRSP p a c k e t t o t h e r e mo t e p e e r . Done with a

i b v _ p o s t _ s e n d us ing
* o p c o d e IBV_WR_SEND .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
* enum m e s s a g e _ i d m e s s a g e _ t y p e :
* S p e c i f i e s t h e p a c k e t t y p e . Should be one o f MSG_MR_ERR,

MSG_MR_AAR,
* or MSG_MR_A.
* u i n t 8 _ t e r r o r c o d e :
* E r r o r c o d e send in t h e p a c k e t , i f m e s s a g e _ t y p e was

MSG_MR_ERR.
* Unused f o r o t h e r message t y p e s .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t naaice_send_message (s t r u c t naaice_communication_context

* comm_ctx ,
enum message_id message_type , u i n t 8 _ t errorcode) ;

/ * *
* n a a i c e _ p o s t _ r e c v _ m r s p
* P o s t s a r e c i e v e f o r an MRSP message .
* A r e c i e v e r e q u e s t i s added t o t h e queue which s p e c i f i e s t h e

memory r e g i o n
* t o be w r i t t e n t o (in t h i s c a s e , t h e MRSP r e g i o n) .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c c e s s f u l , −1 i f not .
* /
i n t naaice_post_recv_mrsp (s t r u c t naaice_communication_context

24

* comm_ctx) ;

/ * *
* na a i c e _d o_ mr sp
* Does a l l l o g i c f o r t h e MRSP in a b l o c k i n g f a s h i o n .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c c e s s f u l , −1 i f not .
* /
i n t naaice_do_mrsp (s t r u c t naaice_communication_context

* comm_ctx) ;

Data Transfer

/ * *
* n a a i c e _ i n i t _ d a t a _ t r a n s f e r :
* S t a r t s t h e d a t a t r a n s f e r . That i s , p o s t s t h e w r i t e f o r

memory r e g i o n s t o
* t h e NAA.
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n and memory

r e g i o n s .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t n a a i c e _ i n i t _ d a t a _ t r a n s f e r (s t r u c t

naaice_communication_context * comm_ctx) ;

/ * *
* n a a i c e _ w r i t e _ d a t a :
* Wr i t e s memory r e g i o n s (m e t a d a t a and i n p u t p a r a m e t e r s) t o t h e

NAA. Done
* wi th a i b v _ p o s t _ s e n d us ing o p c o d e IBV_WR_RDMA_WRITE or
* IBV_WR_RDMA_WRITE_WITH_IMM (f o r t h e f i n a l memory r e g i o n) .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
* u i n t 8 _ t f n c o d e :
* Func t i on Code f o r NAA r o u t i n e . P o s i t i v e , 0 on e r r o r .

25

*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t naaice_wri te_data (s t r u c t naaice_communication_context

* comm_ctx ,
u i n t 8 _ t fncode) ;

/ * *
* n a a i c e _ p o s t _ r e c v _ d a t a
* P o s t s a r e c i e v e f o r a memory r e g i o n w r i t e .
* I t i s on ly n e c e s s a r y t o p o s t a r e c i e v e f o r t h e f i n a l memory

r e g i o n t o be
* w r i t t e n , t h a t i s , t h e w r i t e wi th an immed ia t e v a l u e . RDMA

w r i t e s w i t h o u t
* an immed ia t e s im p ly o c c u r w i t h o u t consuming a r e c i e v e

r e q u e s t in t h e queue .
*
* The memory r e g i o n s p e c i f i e d in t h e r e c i e v e r e q u e s t i s t h e

MRSP r e g i o n ;
* t h i s i s j u s t a dummy va lue , a s t h e r e g i o n w r i t t e n t o i s

s p e c i f i e d by t h e
* s e n d e r .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c c e s s f u l , −1 i f not .
* /
i n t naaice_post_recv_data (s t r u c t naaice_communication_context

* comm_ctx) ;

/ * *
* n a a i c e _ d o _ d a t a _ t r a n s f e r
* Does a l l l o g i c f o r t h e d a t a t r a n s f e r , i n c l u d i n g w r i t i n g d a t a

t o t h e NAA,
* wat ing f o r t h e NAA c a l c u l a t i o n , and r e c e i v i n g t h e r e t u r n

d a t a back , in a
* b l o c k i n g f a s h i o n .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c c e s s f u l , −1 i f not .
* /

26

i n t naa ice_do_data_ t rans fer (s t r u c t naaice_communication_context
* comm_ctx) ;

3.2 Software-NAA API

Setup and Infiniband Work Completions

/ * *
* n a a i c e _ i n i t _ c o m m u n i c a t i o n _ c o n t e x t :
* I n i t i a l i z e s communicat ion c o n t e x t s t r u c t .
*
* The dummy s o f t w a r e NAA r e u s e s t h e communicat ion c o n t e x t

s t r u c t from t h e
* hos t − s i d e AP1 i m p l e m e n t a t i o n , but doesn ’ t use a l l t h e f i e l d s

in t h e
* e x a c t same way . Most i m p o r t a n t l y , t h e s i z e and number o f

p a r a m e t e r s
* i s not known (and r e l a t e d f i e l d s a r e not p o p u l a t e d) u n t i l

a f t e r t h e
* MRSP i s c o m p l e t e .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx : (r e t u r n param)
* P o i n t e r t o communicat ion c o n t e x t s t r u c t t o be i n i t i a l i z e d .
* Should not p o i n t t o an e x i s t i n g s t r u c t ; t h e s t r u c t i s

a l l o c a t e d
* and r e t u r n e d by t h i s f u n c t i o n .
* c o n s t c h a r * p o r t :
* S t r i n g s p e c i f y i n g c o n n e c t i o n por t , ex . "12345" .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t naaice_swnaa_init_communication_context (

s t r u c t naaice_communication_context * * comm_ctx , u i n t 1 6 _ t
port) ;

/ * *
* n a a i c e _ s w n a a _ h a n d l e _ w o r k _ c o m p l e t i o n :
* Handles a s i n g l e work c o m p l e t i o n from t h e c o m p l e t i o n queue .
* These r e p r e s e n t memory r e g i o n w r i t e s from h o s t t o NAA or NAA

t o h o s t .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .

27

* /
i n t naaice_swnaa_handle_work_completion (s t r u c t ibv_wc *wc ,

s t r u c t naaice_communication_context * comm_ctx) ;
/ * *
* n a a i c e _ s w n a a _ p o l l _ c q _ n o n b l o c k i n g :
* P o l l s t h e c o m p l e t i o n queue f o r any work c o m p l e t i o n s , and

h a n d l e s them i f
* any a r e r e c e i v e d us ing n a a i c e _ h a n d l e _ w o r k _ c o m p l e t i o n .
*
* S u b s e q u e n t l y , comm_ctx −> s t a t e i s upda t ed t o r e f l e c t t h e

c u r r e n t s t a t e
* o f t h e NAA c o n n e c t i o n and r o u t i n e .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c e s s f u l (r e g a r d l e s s o f whe the r any work c o m p l e t i o n s

a r e r e c e i v e d) ,
* −1 i f not .
* /
i n t naaice_swnaa_poll_cq_nonblocking (

s t r u c t naaice_communication_context * comm_ctx) ;

Connection Management

/ * *
* n a a i c e _ s w n a a _ s e t u p _ c o n n e c t i o n :
* Loops p o l l i n g f o r and h a n d l i n g c o n n e c t i o n e v e n t s u n t i l

c o n n e c t i o n s e t u p
* i s c o m p l e t e . Un l i k e t h e b a s e n a a i c e v e r s i o n , d o e s not

r e q u i r e h a n d l i n g
* t h e a d d r e s s o r r o u t e r e s o l u t i o n e v e n t s , but d o e s h a n d l e t h e

c o n n e c t i o n
* r e q u e s t s c o m p l e t e e v e n t which i s not h a n d l e d on t h e h o s t

s i d e .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not (due t o t i m e o u t) .
* /
i n t naaice_swnaa_setup_connection (

s t r u c t naaice_communication_context * comm_ctx) ;
/ * *

28

* swnaa c o n n e c t i o n e v e n t h a n d l e r s :
* These f u n c t i o n s e a c h h a n d l e a s p e c i f i c c o n n e c t i o n e v e n t . I f

t h e p r o v i d e d
* e v e n t ’ s t y p e matches t h e e v e n t t y p e o f t h e h a n d l e r f u n c t i o n ,

i t e x e c u t e s
* t h e n e c e s s a r y l o g i c t o h a n d l e i t .
*
* S u b s e q u e n t l y , f l a g s in t h e communicat ion c o n t e x t a r e upda t ed

t o r e p r e s e n t
* t h e c u r r e n t s t a t u s o f c o n n e c t i o n e s t a b l i s h m e n t .
*
* The e v e n t s h a n d l e d by t h e s e f u n c t i o n s are , in o r d e r :
* RDMA_CM_EVENT_CONNECTION_REQUEST
* RDMA_CM_EVENT_CONNECT_ESTABLISHED
*
* Also , t h e f o l l o w i n g a r e h a n d l e d by n a a i c e _ h a n d l e _ e r r o r :
* RDMA_CM_EVENT_ADDR_ERROR, RDMA_CM_EVENT_ROUTE_ERROR,
* RDMA_CM_EVENT_CONNECT_ERROR, RDMA_CM_EVENT_UNREACHABLE,
* RDMA_CM_EVENT_REJECTED, RDMA_CM_EVENT_DEVICE_REMOVAL,
* RDMA_CM_EVENT_DISCONNECTED.
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n with e v e n t s t o

h a n d l e .
* s t r u c t rdma_cm_event * ev :
* P o i n t e r t o e v e n t t o be c h e c k e d and p o s s i b l y h a n d l e d .
*
* r e t u r n s :
* 0 i f s u c e s s f u l (i . e . e i t h e r t h e e v e n t was t h e match ing t y p e

and was h a n d l e d
* s u c c e s s f u l l y , o r t h e e v e n t was not t h e match ing t y p e) , −1 i f

no t .
* /
i n t naaice_swnaa_handle_connect ion_requests (s t r u c t

naaice_communication_context * comm_ctx ,
s t r u c t rdma_cm_event * ev) ;

i n t naaice_swnaa_handle_connect ion_establ ished (
s t r u c t naaice_communication_context * comm_ctx , s t r u c t

rdma_cm_event * ev) ;

/ * *
* n a a i c e _ s w n a a _ p o l l _ a n d _ h a n d l e _ c o n n e c t i o n _ e v e n t :
* P o l l s f o r a c o n n e c t i o n e v e n t on t h e RDMA e v e n t c h a n n e l

s t o r e d in t h e
* communicat ion c o n t e x t and h a n d l e s t h e e v e n t i f one i s

r e c e i v e d .
* Simply u s e s t h e p o l l and h a n d l e f u n c t i o n s a b o v e .
*

29

* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c e s s f u l (r e g a r d l e s s o f whe the r an e v e n t i s r e c e i v e d) ,

−1 i f not .
* /
i n t naaice_swnaa_poll_and_handle_connection_event (

s t r u c t naaice_communication_context * comm_ctx) ;

/ * *
* n a a i c e _ s w n a a _ d i s c o n n e c t _ a n d _ c l e a n u p :
* T e r m i n a t e s t h e c o n n e c t i o n and f r e e s a l l communicat ion

c o n t e x t memory .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t naaice_swnaa_disconnect_and_cleanup (

s t r u c t naaice_communication_context * comm_ctx) ;

Memory Region Exchange

/ * *
* n a a i c e _ s w n a a _ i n i t _ m r s p :
* S t a r t s t h e MRSP on t h e NAA s i d e . That i s , p o s t s a r e c i e v e

f o r MRSP
* p a c k e t s e x p e c t e d from t h e h o s t .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n and memory

r e g i o n s .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t naaice_swnaa_init_mrsp (s t r u c t naaice_communication_context

* comm_ctx) ;

/ * *
* n a a i c e _ s w n a a _ p o s t _ r e c v _ m r s p

30

* P o s t s a r e c i e v e f o r an MRSP message .
* A r e c i e v e r e q u e s t i s added t o t h e queue which s p e c i f i e s t h e

memory r e g i o n
* t o be w r i t t e n t o (in t h i s c a s e , t h e MRSP r e g i o n) .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c c e s s f u l , −1 i f not .
* /
i n t naaice_swnaa_post_recv_mrsp (s t r u c t

naaice_communication_context * comm_ctx) ;
/ * *
* naa ice_swnaa_handle_mr_announce ,
* n a a i c e _ s w n a a _ h a n d l e _ m r _ a n n o u n c e _ a n d _ r e q u e s t :
*
* Hand l e r s f o r MRSP p a c k e t s .
* P r o c e s s e s t h e c o n t e n t s o f a r e c e i v e d MRSP p a c k e t o f t h e

c o r r e s p o n d i n g type ,
* p o p u l a t i n g r e l e v a n t v a l u e s in t h e communicat ion c o n t e x t .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t naaice_swnaa_handle_mr_announce (

s t r u c t naaice_communication_context * comm_ctx) ;
i n t naaice_swnaa_handle_mr_announce_and_request (

s t r u c t naaice_communication_context * comm_ctx) ;

/ * *
* n a a i c e _ s w n a a _ s e n d _ m e s s a g e :
* Sends an MRSP p a c k e t t o t h e r e mo t e p e e r . Done with a

i b v _ p o s t _ s e n d us ing
* o p c o d e IBV_WR_SEND .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
* enum m e s s a g e _ i d m e s s a g e _ t y p e :
* S p e c i f i e s t h e p a c k e t t y p e . Should be one o f MSG_MR_ERR,

MSG_MR_AAR,
* or MSG_MR_A.
* u i n t 8 _ t e r r o r c o d e :

31

* E r r o r c o d e send in t h e p a c k e t , i f m e s s a g e _ t y p e was
MSG_MR_ERR.

* Unused f o r o t h e r message t y p e s .
*
* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t naaice_swnaa_send_message (s t r u c t

naaice_communication_context * comm_ctx ,
enum message_id message_type , u i n t 8 _ t errorcode) ; / * *

* naa ice_swnaa_do_mrsp
* Does a l l l o g i c f o r t h e MRSP in a b l o c k i n g f a s h i o n .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c c e s s f u l , −1 i f not .
* /
i n t naaice_swnaa_do_mrsp (s t r u c t naaice_communication_context

* comm_ctx) ;
/ * *
* naa ice_swnaa_do_mrsp
* Does a l l l o g i c f o r t h e MRSP in a b l o c k i n g f a s h i o n .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c c e s s f u l , −1 i f not .
* /
i n t naaice_swnaa_do_mrsp (s t r u c t naaice_communication_context

* comm_ctx) ;

Data Transfer

/ * *
* n a a i c e _ s w n a a _ p o s t _ r e c v _ d a t a
* P o s t s a r e c i e v e f o r a memory r e g i o n w r i t e .
* I t i s on ly n e c e s s a r y t o p o s t a r e c i e v e f o r t h e f i n a l memory

r e g i o n t o be
* w r i t t e n , t h a t i s , t h e w r i t e wi th an immed ia t e v a l u e . RDMA

w r i t e s w i t h o u t
* an immed ia t e s im p ly o c c u r w i t h o u t consuming a r e c i e v e

r e q u e s t in t h e queue .
*

32

* The memory r e g i o n s p e c i f i e d in t h e r e c i e v e r e q u e s t i s t h e
MRSP r e g i o n ;

* t h i s i s j u s t a dummy va lue , a s t h e r e g i o n w r i t t e n t o i s
s p e c i f i e d by t h e

* s e n d e r .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c c e s s f u l , −1 i f not .
* /
i n t naaice_swnaa_post_recv_data (s t r u c t

naaice_communication_context * comm_ctx) ;

/ * *
* n a a i c e _ s w n a a _ h a n d l e _ m e t a d a t a
* Updates i n f o r m a t i o n in t h e communicat ion c o n t e x t b a s e d on

r e c e i v e d
* metadata , which b e f o r e t h i s c a l l s h o u l d be a v a i l a b l e in t h e

l o c a l m e t a d a t a
* memory r e g i o n .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c c e s s f u l , −1 i f not .
* /
i n t naaice_swnaa_handle_metadata (

s t r u c t naaice_communication_context * comm_ctx) ;

/ * *
* n a a i c e _ s w n a a _ w r i t e _ d a t a :
* Wr i t e s t h e r e t u r n memory r e g i o n , s p e c i f i e d by

comm_ctx −>mr_re turn_idx , t o
* t h e r e mo t e p e e r . Done with a i b v _ p o s t _ s e n d us ing o p c o d e
* IBV_WR_RDMA_WRITE_WITH_IMM . The immed ia t e v a l u e i n d i c a t e s i f

an e r r o r has
* o c c u r e d dur ing c a l c u l a t i o n (nonzero = e r r o r) .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
* u i n t 8 _ t f n c o d e :
* Func t i on Code f o r NAA r o u t i n e . P o s i t i v e , 0 on e r r o r .
*

33

* r e t u r n s :
* 0 i f s u c e s s f u l , −1 i f not .
* /
i n t naaice_swnaa_write_data (

s t r u c t naaice_communication_context * comm_ctx , u i n t 8 _ t
errorcode) ;

/ * *
* n a a i c e _ s w n a a _ r e c e i v e _ d a t a _ t r a n s f e r
* Handles r e c i e v i n g d a t a from r em ot e pe e r , b l o c k i n g u n t i l t h i s

i s f i n i s h e d .
* I n f o r m a t i o n a b o u t t h e d a t a i s upda t ed in t h e communicat ion

c o n t e x t .
*
* params :
* n a a i c e _ c o m m u n i c a t i o n _ c o n t e x t * comm_ctx :
* P o i n t e r t o s t r u c t d e s c r i b i n g t h e c o n n e c t i o n .
*
* r e t u r n s :
* 0 i f s u c c e s s f u l , −1 i f not .
* /
i n t naa ice_swnaa_rece ive_data_t rans fer (

s t r u c t naaice_communication_context * comm_ctx) ;
*
* S t a r t s the data t r a n s f e r to the c l i e n t . That i s , posts the

wri te for return memory region .
*
* params :
* naaice_communication_context * comm_ctx :
* Po in ter to s t r u c t descr ib ing the connect ion and memory

regions .
* u i n t 8 _ t fncode :
* e r r o r code returned by NAA rout ine . 0 , p o s i t i v e on e r r o r .
*
* re turns :
* 0 i f sucess fu l , −1 i f not .
*/
i n t naaice_swnaa_wri te_data_transfer (

s t r u c t naaice_communication_context * comm_ctx , u i n t 8 _ t
errorcode) ;

References

[1] Steffen Christgau, Dylan Everingham, Florian Mikolajczak, Niklas Schelten, Bettina
Schnor, Max Schroetter, Benno Stabernack, and Fritjof Steinert. Enabling commu-
nication with fpga-based network-attached accelerators for hpc workloads. In Pro-
ceedings of the SC ’23 Workshops of The International Conference on High Performance

34

Computing, Network, Storage, and Analysis, SC-W ’23, page 530–538, New York, NY,
USA, 2023. Association for Computing Machinery.

[2] Infiniband Trade Association. InfiniBand Architecture Specification Volume 1 Release
1.2.1, 2007.

[3] Stuart Sechrest. An introductory 4.4 bsd interprocess communication tutorial. Com-
puter Science Research Group, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, 1986.

35

	Introduction
	Host-NAA Communication Protocol
	API
	Client API
	Software-NAA API

