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1 Introduction

This documentation concerns the low-level API, which is used a basis for remote direct
memory access (RDMA) based communication between an HPC node and a network
attached accelerator (NAA) on a field programmable gate array (FPGA). As part of the
NAAICE project, RDMA communication between the two is used to facilitate fast data
transfer for the offloading of specific calculations. The offloading of specific calculations
onto an NAA can lead to a reduction in overall runtime and energy consumption of a
given HPC job.

The API is written in C and makes use of two libraries for user-space based RDMA com-
munication. These libraries are libibverbs and librdmacm, which are both part of the
rdma-core library. libibverbs and librdmacm are implementations of the Infiniband
standard. Within the project, the used network protocol is RoCEv2 (RDMA over Con-
verged Ethernet 2). RoCEv2 encapsulates Infiniband packets within UDP/IP packets,
thus making them routeable within an IP-based HPC center. libibverbs provides the
functionalities for setting up Infiniband communication structures, queue pairs (QP), as
well as other structures such as queues for sending and receiving operations as well as
a completion queue, where finished operations are noted. It encapsulates operations
for sending and receiving messages or data in a two-sided (IBV_SEND/IBV_RECV) or
one-sided IBV_WRITE/IBV_READ style. librdmacm provides a method for setting up an
Infiniband-based connection.

As a short introduction, the key structures and components of an Infiniband connection
will be discussed. The reader is referred to the Infiniband standard for more detailed
introduction [2]. Chapter 3 of the standard gives a broad introduction to the overall ar-
chitecture. Generally, knowledge of socket-based communication is assumed, but can be
found in [3]. In Infiniband communication, queue pairs (QPs) are analogous to sockets.
Communication operations include two-sided ones like SEND and RECEIVE operations.
These explicitly synchronize the two communication partners and a SEND operations
cannot be done before the receiving side issues a RECEIVE. Additionally, one-sided com-
munication is available as well, using WRITE or READ operations, as well as ATOMICS.
These one-sided operations are also known as remote direct memory access operations
(RDMA), since the CPU or user-space application on the receiving side is not involved
in the communication. A schematic of RDMA operations as they will be used within
the NAAICE project using RoCEv2 is shown in figure

All communication requests are handled using work queues. These make up the afore-
mentioned queue pairs. The different queues are: send queues and receive queues as
well as completion queues. Send and receive queues are used to post work requests that
will be handled by the network interface card (NIC). Finished work requests (or failures)
are reported in the completion queue. Additionally, memory buffers that are used for
the transfer of data exist. These are called memory regions. Memory regions have to
be allocated and registered to the device. After registration, the NIC can access these
buffers without involvement of the CPU, a prerequisite for RDMA operations. Memory
regions are identified by an address and length. Accessing memory regions is restricted
through a set of a local and remote key (rkey, lkey). A memory region can be split
into different memory windows (MW) with their own keys. Many memory regions can
be associated with a single queue pair. As an overarching structure, protection domains
also exist. This structure combines memory regions and queue pairs and is used to



provide a mechanism for access management. A memory region is registered to a pro-
tection domain and a queue pair allocated to a protection domain. Any given key set
of a memory region is only valid on queue pairs from the same protection domain [2,
p. 107]. Figure [1| summarizes the relationship of the different components of an Infini-
band connection. All features mentioned above except memory windows are used so
far within the API for AP 1.

2 Host-NAA Communication Protocol

Prior to implementing a low-level API, the communication pattern between an HPC
node and an NAA was discussed and explored. For this, a communication sequence
diagram was created by HHI, ZIB and UP. Within discussions for the communication
sequence diagram, a protocol for exchanging memory region metadata was designed
as well. The sequence diagram is shown in figure The communication between
the HPC node and the NAA on the FPGA is analogous to the general client-server
model. The HPC node acts as the client and initiates the connection. By transferring
data and a function code (AP 2), it also initiates calculations on the FPGA in the style
of an asynchronous RPC. The FPGA takes on the role of the server, waits for connection
requests and responds to an RPC with the result data. The communication can be
split up in four different sections: The connection establishment, the setup of memory
regions, the data transfer and the connection termination.

Connection Establishment

The connection management is handled by functions from the library 1ibrdmacm. Much
like in TCP, connection establishment is done by a three-way handshake. The client
sends a connection request (REQ), to which the server replies with a Reply message REP.
Finally, the connection is fully established with a Ready-to-Use (RTU) message by the
client. Other message types for unsuccessful connections can be found in the Infiniband
Standard chapter 12.6 [2]. All message types for connection establishment defined in
the Infiniband standard are also implemented on the FPGA. During AP1 the IP address
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Figure 1: Schematic figure of RDMA communication between two hosts. As in the
source code for AP 1, one host takes on the role of a RoCE client, initiating
a connection as depicted in figure 2l and requesting the calculation of a given
problem by the RoCE server in an RPC-like manner through the transfer of
input data. The data structures within the memory, e.g. memory regions are

registered to the NIC, such that no CPU involvement is necessary during the
data transfer.




of the server is a user argument for the client program. The server listens for connection
requests on a specific and known port. In future developments, the user can ask the
resource management system of the computer center for an FPGA with the desired
capabilities and will receive information on its IP address and the port number for
connection establishment.

Memory Region Setup Protocol (MRSP)

Before data can be transferred, meta information about the memory regions, i.e., buffers
registered to the NIC, has to be exchanged. Within the project, a protocol for memory
region setup has been developed. Generally, the client announces memory regions for
the transfer of results from the server to the client and requests memory regions on the
server for its input data. The advertisement for a memory region includes the address
of the region as well as the length and the remote key for access control. The request for
a memory region includes a valid physical FPGA address, the size and memory region
flags. These are unused so far, but can in the future be used to request regions on the
FPGA that will not be used for data transfer.

The MRSP is done using two messages. All memory regions are announced and re-
quested by the client in one message. The server than handles this announcement and
request and returns the virtual addresses and rkeys for the requested memory regions
in a single message back to the client.

Earlier versions of the MRSP exist: First, a static approach was used. A single memory
region is announced through a single message and the amount of requested memory
on the server is requested through one single message as well. With this approach, the
number of messages scales linearly with the amount of memory regions to exchange,
requiring n advertisements and 1 request from the client and n advertisements from
the server. As a second approach, a dynamic exchange of memory regions was de-
veloped. Herein, all announced memory regions are sent within a single message of
variable size. Thus, both communication partners can announce the meta-information
for all registered memory regions in one message per direction (excluding acknowledge-
ments). Within the same message or another message type, the HPC node also requests
an amount of memory to be registered in the server for data transfer. The different
message types will be discussed in detail in the next section. The server then responds
with the advertisement for the memory region(s) it has allocated in accordance with the
overall size requested by the client. Therefore, the exchange of memory regions is done
in 2 messages (excluding acknowledgements) regardless of the number of requested
memory regions.

In another update, the user now announces host memory regions and FPGA memory
regions of the same size in the same message. This is necessary, since the memory
management of the FPGA will be outsourced to a service of the resource management
system (RMS) or compute cluster. The user will receive valid FPGA memory addresses
through this service and request these addresses on the FPGA. The current implemen-
tation might change in the future, based on the performance of different data transfer
styles. This if further discussed in section

The communication pattern for the exchange of memory region information is two-
sided. Thus, IBV_SEND operations are used, for which a prior IBV_RECV work request
has to be posted by the receiver. If the receiver has not posted such a request, the transfer
will not work. Depending on the configuration, the sender will retry the transfer a
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Figure 2: Communication sequence diagram between an HPC node and an NAA on an
FPGA. The communication pattern was designed as part of AP 1. The com-
munication follows a server-client model, where the HPC node is the initiating
client. The FPGA takes on the role of the server and responds to the con-
nection. Similarly, the communication is RPC-like, where the end of the data
transfer signals the FPGA that calculation or work on the request can now be-
gin. In the reverse direction, the end of data transfer back to the client signals
the end of the RPC. The actual synchronization is explicitly facilitated by the
RDMA operation used: IBV_WRITE_WITH_IMM.

number of times after a short pause. Note, that unsuccessful transfers are not easily
spotted in network traffic recorded by tools like wireshark. In any case, the receiver
will respond with an ack message. However, in unsuccessful transfers the ack-specific



header includes a syndrome value of 32 instead of 0 for successful transfers.

Message Types

For the new memory setup protocol, specific message types were defined. This doc-
ument limits itself to most recent implementation including the message type of the
dynamic memory region setup protocol with FPGA addresses. The memory exchange
protocol requires a total of 3 different messages so far.

¢ 0x00 Error
A generic message including an error code to communicate errors during the
MRSP.

¢ 0x01 Advertisement and Request
Used by the client to announce its memory regions and request a specific amount
of memory on the server

¢ 0x02 Advertisement
Used by the server to announce its memory regions after a request. Note: This
message type could also be used by the client, requiring a specific request message. This is
already defined, but not used.

All messages share a similar structure as shown below:

0 1 2 3
012345678901234567890123456789601
B Ll aon s 2T T T
| Type | Type-Specific Data ...
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where type denotes the message types defined in the list above.

An Advertisement and Request message can include up to 256 memory regions, limited
only be the count variable, which indicates the number of announced memory regions.
This variable has 8 bits but can be expanded to use up to 24 bits (including 16 bits now
used for padding). However, the current limit of 256 memory regions to be exchanged
vastly outnumbers the amount of memory regions the FPGA can handle. In the current
implementation, the FPGA is only able to handle up to 32 memory regions. Note: For
regular compute nodes using ibverbs, the amount of memory available for registra-
tion is hardware-specific as well. The size of a single memory region is limited by the
Infiniband standard to a maximum of 1 GB.

Advertisement and Request Message
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012345678901234567890123456789¢01
B e T T S T T e S e R R et s R S R e e e e e R il S

| Type = 0x01 | Count = N | Padding |
+-t-t-t-F-F-t-t-t-t-+-F-F-F-t-t-t-+-F-F-F-F-F-+-+-+-F-F-+-+-+-+-+
| MR Flags | Requested

ottt -+ +
| FPGA address 1 |
o e T e e e e T S T R R Rl T L S T T R T T E EE T E e



+
I
+-
I
+-
I
+-

Published Addr 1

+

Fot-dotototot-dbototototobotodbototototobototototobotobot-t-t-t-+

Published RKey 1

Fot-dotot-totodbototototototodtotot-tot-totototot-tot-tot-t-t-t-+

Published Size 1

HFot-dototototodototototototodtotototot-dbotototot-bototot-t-tot-+

+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-F-F-F-F-F+-F-F-F-F-F-F-F-F+-F+-+-+-+-+
MR Flags
-ttt -+-+-+

B L T e e e e e t et A T Tt A S S o S Rk Sk STr EF AP R A &

I
+
I
+ -
I
+ -
I
+ -

The Advertisement and Request message includes the metadata for each memory region
to be announced, i.e. the starting address, size and the remote key, which needs to be
included in each RDMA request later on. The Advertisement message is a part of the
Advertisement and Request message, excluding the request part and is, up to now,
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solely used by the RDMA server. Its structure is depicted below:
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Lastly, the error message only includes an error code:

0 1 2 3

012345678901234567890123456789¢01
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The 8-bit variable allows 256 different error codes and can be extended if more codes
are necessary.

The first set of error codes have already been defined. The error message is self will
only be used for errors related to the exchange of memory region. For the connection
management, messages signaling errors are already included and error handling is part
of the librdmacm library. Error in data transfer are reported in the completion queue
and do not need a specific error messages. Errors during the calculation are reported by
the server as the immediate value within the IBV_WRITE_WITH_IMM message.

The error codes defined for the exchange of memory regions so far are:

¢ 0x01: Not enough memory available (address + size exceeds the memory bound-
ary)

e 0x02: invalid address (address is out of bounds)

¢ 0x03: Too many regions requested

Data Transfer (and calculations)

Data transfer occurs twice. First the HPC node sends input data to the NAA. Data will
be using one-sided RDMA operations. If the data transfer can be done in one operation,
i.e. only one MR is transferred, an IBV_WRITE_WITH_IMM (Write with immediate data)
will be used. The immediate data is a 32-bit value that is transferred with the data. This
immediate data is used to transfer the function code, i.e. which calculation is to be done
by the FPGA. If n | n > 1 operations are used, n — 1 IBV_WRITE operations are done and
a single last IBV_WRITE_WITH_IMM. Unlike for simple IBV_WRITE operations, the receiver
has to post a receive work request, as seen above in case of IBV_SEND operations. Using
this, explicit synchronization after the last data transfer between sender and receiver is
done. The communication style of the data transfer is further discussed in section
Next, the NAA does calculations, while the HPC node waits for response. Whether
explicit waiting or polling is used by the HPC node is outside the scope of this document
and will be handled in AP 2. After calculations are done, the FPGA sends results
data back in the same way it received data. Again, the last transfer operation will be
an IBV_WRITE_WITH_IMM, synchronizing both communication partners. An immediate
value of 0 indicates success. Errors are reported with a positive integer as the immediate
value. The error codes defined so far are:

e 0x01: Socket not available

e 0x02: Kernel timeout



® 0x03-0x0f: reserved

* 0x10 - 0x7f: Application / calculation errors

Connection Termination

Connection termination is again done through methods provided by librdmacm. The
HPC node (client) sends a disconnect request (DREQ), message to the FPGA (server).
The FPGA replies with a disconnect reply (DREP) message, terminating the connection.
More information on connection management can be found in the Infiniband standard
chapter 12.6 [2]. All message types for connection termination defined in the Infiniband
standard are also implemented on the FPGA.

Data Transfer: Number of Memory Regions

The main goal of the APl is to allow the offloading of tasks on to an NAA in an RPC-like
fashion. For this, the data transfer should be as performant as possible. Taking message
overhead into account it can be safely assumed that the performance of fewer and larger
messages is the best. The actual style of the data transfer, i.e. the number and size of
messages sent is dependent on many factors however:

* A single message can only hold 1 GB, which is also the maximum size for a mem-
ory region right now

¢ There is an overhead for multiple memory regions on the FPGAD

— The management on the FPGA (e.g. mapping of virtual to physical addresses
and the verification of the rkeys) is easier with a smaller number of memory
regions

— The resource cost (number of registers, amount of memory) for each sup-
ported queue pair scales with the number of regions.

However, the performance of the FPGA with multiple DDR DIMMS (double data
rate dual inline memory modules), will have a faster internal read/write perfor-
mance if multiple memory regions on multiple DIMMS are used.

* From the user perspective, zero-copy data transfer is preferred (at least for large
data chunks), i.e. each RPC parameter should have its own memory region.

At the start we have identified two distinct setups regarding memory regions: A sym-
metric and an asymmetric setup with one memory region on the FPGA. Other asymmet-
ric memory region setups exist e.g. with two memory regions on the FPGA. However,
these only represent intermediate stages between the two outlined border cases. The
symmetric and asymmetric memory region setup with only one memory region on the
FPGA are outlined in Figure[3jland 4] Currently, the symmetric approach is used. Large
parameters receive their own memory region to allow for zero-copy data transfer. How-
ever, smaller parameters will be collected in a single memory region, for which copying
of data on the client side is justifiable. In a later stage of the project, different approaches
will be compared to find the most performant approach.

To justify this setup, a closer look will be taken at the ibverbs-provided semantics

1 According to Fraunhofer Heinrich-Hertz-Institute



of writing data. Data is written using ibv_post_send(), which takes the associated
queue pair and a list of work requests as paramters. For a detailed look at the pa-
rameters the user is referred to the manpage of ibv_post_send(). Every work request
includes (among other less important parameters) an opcode. For writing data with
RDMA, either an ROMA_WRITE or RDMA_WRITE_WITH_IMM opcode is used. Additionally,
each RDMA write request includes a remote address (to write to) and its accompanying
rkey. Thus, the remote address has to be registered as part of a memory region the re-
mote host as well. The memory to be written to the remote memory region is identified
by a list of scatter-gather-elements (SGEs). Each SGE is made up of a starting address
and its accompanying lkey and the amount of memory to write. Thus, memory to write
to the remote host has to be registered as part of a memory region as well.

When using multiple SGEs, the data is written into contiguous memory on the remote
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Figure 3: Schematic figure of symmetric memory region setup host-based client and
an NAA-server. Both have the same amount of memory regions with equal
sizes on both sides. The data is transferred using N operations for N memory

regions.
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Figure 4: Schematic figure of asymmetric memory region setup host-based client and
an NAA-server. The NAA only has one large memory region into which ev-
erything must be written. This can be done individually with a known offset
using N operations for N memory regions or in 1 operation (up to 1 GB in
total) using scatter-gather-elements.
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side and interpreted as one single blob of memory, i.e. the remote is not aware of the
fact that the data comes from different memory regions and might describe different
parameters. Thus, when using SGEs, usually metadata has to be transferred as well for
the remote side to distinguish the original meaning of the data. Additionally, Dotan
Barak (Mellanox/NVIDIA), a main developer of ibverbs as part of the Linux Kernel,
hints that using many SGEs is not performanﬁ When using multiple SGEs, the NIC
collects the data from the different memory regions and transfers it to the remote side.
It is yet unclear whether this leads to internal copying of data.

Lastly, first experiments suggest that using multiple write operations with multiple
memory regions of 1 MB or larger provide optimal throughput [1]. To summarize,
we use the symmetric approach for now, because:

e It is easier to implement

¢ The sizes of most parameters of the RPC can be inferred by the memory region
size

* We don’t expect large performance issues

2https://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-your- rdma-code/
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3 API

The documentation of the API includes the structures as well as all methods. The API
specifies methods for a client and server. The client is always a host machine, requesting
some RPC to be done on a remote machine. The remote part can be taken on by a host
machine as well, for which we provide software, or any other machine such as an FPGA,
which is compatible with the proposed API. The software for host clients and servers is
modelled as a state machine.

State Machine

A state machine is used to facilitate communication as depicted in Figure 2| Our state
machine is defined with the following states:

enum naaice_communication_state

{

INIT = 00,
READY = 01,
CONNECTED = 02,
DISCONNECTED = 03,
MRSP_SENDING = 10,
MRSP_RECEIVING = 11,
MRSP_DONE =12,
DATA _SENDING = 20,
CALCULATING = 21,
DATA _RECEIVING = 22,
FINISHED = 30,
ERROR = 40,

}s

An exemplary flow chart of the state machines for a client and server without errors are
given in Figure 5| Except for CALCULATING, both communication partners run through
all states.

12
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Figure 5: Flow chart of the state machine for client and server. An error-free communi-
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Structures

Structures for Handling Messages

struct naaice_mr_hdr{
uint8_t type;
b
struct naaice_mr_dynamic_hdr{
uint8_t count;
uint8_t padding[2];
b
struct naaice_mr_advertisement_request{
uint8_t mrflags;
uint8_t fpgaaddress|[7];
uint64_t addr;
uint32_t rkey;
uint32_t size;
b
struct naaice_mr_advertisement
{
uint64_t addr;
uint32_t rkey;
uint32_t size;

};

struct naaice_mr_error {
uint8_t code;

uint8_t padding[2];
¥

Different structures for the parsing of messages exist. All defined messages have in
common that the first 8 bit signify the message type. All messages but error messages
then include 8 bits for a count variable and 16 bits for padding. An Advertisement and
Request includes the five variables of metadata: 8 bits for MR flags, which signify the
type of MR: regular or FPGA-only; 56 bits for a requested FPGA address, and the ad-
dress (64), rkey (32) and length (32) of the advertised MR. Error messages simply consist
of the error code and padding. The different structures are used in parsing messages
according to the message type.

Memory Region Structures

struct naaice_mr_peer {
uint64_t addr;
uint32_t rkey;
uint32_t size;

}s

struct naaice_mr_local{

14



struct ibv_mr =xibv;
char xaddr;
size_t size;
bool write;

¥

struct naaice_mr_internal {
char xaddr;
uint32_t size;

b

Three different structures for memory regions exist. Peer memory regions, i.e. those of
the remote host are identified by the address, rkey and size, much like the advertisement
message structure. Local memory region structures consist of a memory region structure
from the libibverbs library and an address pointer and the size (also available via
the ibv_mr member). The memory region structure ibv_mr also includes the local and
remote key and size of the memory region, as well as the address. Local memory regions
also have an associated bool variable that states, whether the given MR will be written
in the next write operation. The different memory regions are available as an array that
is part of the overall communication structure naaice_communication_context, which
holds all information relevant for the communication. Internal memory regions are only
available on the FPGA and are used for storing calculation results/temporary results.

struct naaice_communication_context

{

// Basic connection properties.

struct rdma_cm_id =id; // Communication ID.
struct rdma_event_channel xev_channel; // Event channel.
struct ibv_context =ibv_ctx; // IBV context.

struct ibv_pd =pd; // Protection domain.
struct ibv_comp_channel #comp_channel; // Completion channel.
struct ibv_cq =cq; // Completion queue.
struct ibv_qp =*qp; // Queue pair.

// Current state.
enum naaice_communication_state state;

// Local memory regions .
struct naaice_mr_local »mr_local _data;
uint8 t no_local mrs;

// Index indicating which local memory region is the return
region .

// Set when the return address is set, in naaice_set_metadata.

// Should be in range [1, no_local_mrs].

uint8 _t mr_return_idx;

// Array of peer memory regions, i.e. information about

memory regions of the
// commuication partner.

15



// Includes only symmetric memory regions , i.e. only MRs
representing parameters

// and mnot internal MRs used on the NAA just for computation.

struct naaice_mr_peer smr_peer_data;

uint8_t no_peer_mrs;

// Used for MRSP.

struct naaice_mr_local *mr_local_message;

// Array of internal memory regions , i.e. information about
memory regions

// on the NAA used only for computation which are not
communicated during

// data transfer.

struct naaice_mr_internal *mr_internal;

uint8_t no_internal _mrs;

// Function code indicating which NAA routine to be called .
uint8_t fncode;

// Keeps track of number of writes done to NAA.
uint8 t rdma_writes _done;

b

enum naaice_communication_state

{

INIT = 00,
READY = 01,
CONNECTED = 02,
DISCONNECTED = 03,
MRSP_SENDING = 10,
MRSP_RECEIVING = 11,
MRSP_DONE =12,
DATA_SENDING = 20,
CALCULATING = 21,
DATA _RECEIVING = 22,
FINISHED = 30,
ERROR = 40,

}s

Additionally, all ibverbs-specific structures such as the queue pair, and work request
queues are part of the communication context structure. Each communication partner
is modeled as a state machine. This is done since the communication works with events
that signal the current state of the connection, such as establishment of a connection or
the completion of sending/writing operations. All unsigned integer members are used
for internal bookkeeping.
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3.1 Client API

Setup and Infiniband Work Completions

[**

*

*

*

¥

*/

naaice_init_communication_context:

Initializes communication context struct.

After a call to this function , the provied communication
context struct is

ready to be passed to all other APl functions.

params :

naaice_communication_context xxcomm_ctx: (return param)

Double pointer to communication context struct to be
initialized .

Should not point to an existing struct; the struct is
allocated

and returned by this function.
unsigned int *param_sizes:

Array of sizes (in bytes) of the provided routine
parameters .
char #*xparams:

Array of pointers to parameter data. Should be
preallocated by

the host application.
unsigned int params_amount:

Number of params. Used to index param_sizes and params, so
their lengths

should correspond to params_amount.
uint8_t fncode:

Function code specifying which NAA routine to be called.
const char =*remote_ip:

String specifying remote address, ex. "10.3.10.135".
uintl6_t port:

Value specifying connection port, ex. 12345.

returns:
0 if sucessful , -1 if not.

[**

*

*

*

*

naaice_handle_work_completion :

Handles a single work completion from the completion queue.
These represent memory region writes from host to NAA or NAA
to host.

params :

naaice_communication_context *comm_ctx:
Pointer to struct describing the connection.
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* returns:

* 0 if sucessful , =1 if not.

*/

int naaice_handle_work_completion(struct ibv_wc =wc,
struct naaice_communication_context xcomm_ctx);

[ % *

* naaice_poll_cq_nonblocking :

* Polls the completion queue for any work completions , and
handles them if

* any are recieved using naaice_handle_work_completion.

*  Subsequently , comm_ctx—>state is updated to reflect the
current state
* of the NAA connection and routine.

* params:
*  maaice_communication_context *comm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if sucessful (regardless of whether any work completions
are recieved),

+ =1 if not.

*/

int naaice_poll_cq_nonblocking(struct
naaice_communication_context xcomm_ctx);

[ % *

* naaice_poll_cq_blocking:

* Polls the completion queue for any work completion once and
blocks until any completion

* is available. Then it handles them using
naaice_handle_work_completion .

*  Subsequently , comm_ctx—>state is updated to reflect the
current state
* of the NAA connection and routine.

* params:
*  maaice_communication_context *comm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if sucessful (regardless of whether any work completions
are recieved),

* -1 if not.

*/

int naaice_poll_cq_blocking(struct naaice_communication_context
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+comm_ctx) ;
[* %

* naaice_init_rdma_resources

*

completion queue, and
* queue pair.

* params:

*  naaice_communication_context xcomm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if successful , =1 if not.

*/

int naaice_init_rdma_resources(struct
naaice_communication_context xcomm_ctx);

Connection Management

[**

* naaice_poll_connection_event:

Allocates a protection domain, completion channel,

* Polls for a connection event on the RDMA event channel

stored in the

* communication context. If a connection event is recieved,

stores it
* in the provided event pointer.

recieved ),

* params:
*  naaice_communication_context *comm_ctx:
* Pointer to struct describing the connection to be polled.
* struct rdma_cm_event ev: (return param)
* Pointer to event recieved.
*
* returns:
* 0 if sucessful (regardless of whether an event is
-1 if not.
*/

int naaice_poll_connection_event(struct
naaice_communication_context scomm_ctx,
struct rdma_cm_event
struct rdma_cm_event

[**

* connection event handlers:

* These functions each handle a specific connection
the provided

*ev,
+ev_cp);
event. If

* event’s type matches the event type of the handler function,

it executes
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* the necessary logic to handle it.

*  Subsequently , flags in the communication context are updated
to represent
* the current status of connection establishment.

* The events handled by these functions are, in order:
*  RDMA_CM_EVENT_ADDR_RESOLVED

*  RDMA_CM_EVENT_ROUTE_RESOLVED

*  RDMA_CM_EVENT_CONNECT_ESTABLISHED

* Also, the following are handled by naaice_handle_error:
+  RDMA_CM_EVENT_ADDR_ERROR, RDMA_CM_EVENT ROUTE_ERROR,

+  RDMA_CM_EVENT CONNECT_ERROR, RDMA_CM_EVENT _UNREACHABLE,
+ RDMA_CM_EVENT REJECTED, RDMA_CM_EVENT DEVICE_REMOVAL,

+  RDMA_CM_EVENT_DISCONNECTED.

* params:

*  mnaaice_communication_context *comm_ctx:

* Pointer to struct describing the connection with events to
handle .

* gtruct rdma_cm_event *ev:

* Pointer to event to be checked and possibly handled .

*

* returns:

* 0 if sucessful (i.e. either the event was the matching type
and was handled
* successfully , or the event was not the matching type), -1 if
not.
*/
int naaice_handle_addr_resolved (
struct naaice_communication_context x*comm_ctx,
struct rdma_cm_event =ev);
int naaice_handle_route_resolved/(
struct naaice_communication_context scomm_ctx,
struct rdma_cm_event =ev);
int naaice_handle_connection_established (
struct naaice_communication_context *comm_ctx,
struct rdma_cm_event =ev);
int naaice_handle_error(
struct naaice_communication_context *comm_ctx,
struct rdma_cm_event =ev);
int naaice_handle_other(
struct naaice_communication_context =comm_ctx,
struct rdma_cm_event =ev);

YEE:
* naaice_poll_and_handle_connection_event:
* Polls for a connection event on the RDMA event channel
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stored in the

* communication context and handles the event if one is
recieved .

*  Simply uses the poll and handle functions above.

* params:

*  naaice_communication_context xcomm_ctx:

* Pointer to struct describing the connection.

*

* returns:

* 0 if sucessful (regardless of whether an event is recieved),
-1 if not.

*/

int naaice_poll_and_handle_connection_event(
struct naaice_communication_context =comm_ctx);

[* %

* naaice_setup_connection :

* Loops polling for and handling connection events until
connection setup

* is complete. Simply uses
naaice_poll_and_handle_connection_event.

* params:
* naaice_communication_context *comm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if sucessful , =1 if not (due to timeout).
*/

int naaice_setup_connection(struct naaice_communication_context
+comm_ctx) ;

YEX:

* naaice_disconnect_and_cleanup :

* Terminates the connection and frees all communication
context memory.

* params:

*  naaice_communication_context xcomm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if sucessful , -1 if not.

*/

int naaice_disconnect_and_cleanup (
struct naaice_communication_context s*comm_ctx);
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Memory Region Exchange

[* %

* naaice_register_mrs:

* Registers local memory regions as IBV memory regions using
ibv_reg_mr.

* This includes memory regions corresponding to input and
output params,

* the single metadata memory region , and the single memory
region used

* for MRSP.

* If an error occurs, the remote peer is notified via
naaice_send_message .

* params:

* naaice_communication_context *comm_ctx:

* Pointer to struct describing the connection and memory
regions .

*

* returns:

* 0 if sucessful , -1 if not.

*/

int naaice_register_mrs(struct naaice_communication_context
+comm_ctx) ;

[**

* naaice_set_metadata :

* Sets the fields of the metadata memory region.

* Specifically , this sets the return_addr field , which
specifies which

* memory region the NAA should write results back to.

*  Should only be called once. Each call to this function
overwrites the
* previous call.

* params:

*  mnaaice_communication_context xcomm_ctx:

* Pointer to struct describing the connection.

* yintptr_t return_addr:

* Address of memory region to be used as the return param
for the RPC.

* returns:

* 0 if sucessful , -1 if not.

*/

int naaice_set_metadata(struct naaice_communication_context
*comm_ctx,
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uintptr_t return_addr);

YEE:

* naaice_set_internal_mrs

* Adds information about internal memory regions to the
communication

* context. Such memory regions exist only on the NAA side and
are used for

* computation. The contents of these memory region are mnot
communicated

* during data transfer.

*  Must be called before naaice_init_mrsp. The internal memory
regions will

* then be included in the memory region announcement message,
indicating that

* they should be allocated by the NAA.

*  Should only be called once. Each call to this function
overwrites the
* previous call.

* params:

* naaice_communication_context *comm_ctx:

* Pointer to struct describing the connection.

* unsigned int n_internal_mrs:

* Number of internal memory regions .

* yintptr_t *addrs:

* Array of addresses of the internal memory regions in NAA

memory space .
* These addresses will be requested of the NAA during MRSP.
* uint32_t xsizes:

* Sizes of the internal memory region , in bytes.
*

* returns:

* 0 if sucessful , -1 if not.

*/

int naaice_set_internal_mrs(struct naaice_communication_context
*comm_ctx,
unsigned int n_internal_mrs, uintptr_t xaddrs, size_t xsizes);

[ % *

* naaice_init_mrsp:

* Starts the MRSP. That is, sends advertise/request packets
and posts a

* recieve for the response.

* params:
*  mnaaice_communication_context *comm_ctx:
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* Pointer to struct describing the connection and memory

regions .
*
* returns:
* 0 if sucessful , -1 if not.

*/
int naaice_init_mrsp (struct naaice_communication_context
scomm_ctx) ;

[**

* naaice_send_message :

* Sends an MRSP packet to the remote peer. Done with a
ibv_post_send using

* opcode IBV_WR_SEND.

* params:
*  mnaaice_communication_context *comm_ctx:
* Pointer to struct describing the connection.

* enum message_id message_type:

* Specifies the packet type. Should be one of MSG_MR_ERR,
MSG_MR_AAR,

* or MSG_MR A.

* uint8_t errorcode:

* Error code send in the packet, if message_type was
MSG_MR_ERR.

* Unused for other message types.

* returns:

* 0 if sucessful , -1 if not.

*/

int naaice_send_message(struct naaice_communication_context
scomm_ctx,
enum message_id message_type, uint8_t errorcode);

[* %

* naaice_post_recv_mrsp

* Posts a recieve for an MRSP message.

* A recieve request is added to the queue which specifies the
memory region

* to be written to (in this case, the MRSP region).

* params:
*  naaice_communication_context xcomm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if successful , -1 if not.

*/

int naaice_post_recv_mrsp(struct naaice_communication_context
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+comm_ctx) ;

YEE:
* naaice_do_mrsp
* Does all logic for the MRSP in a blocking fashion.

* params:
* mnaaice_communication_context xcomm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if successful , =1 if not.

*/

int naaice_do_mrsp(struct naaice_communication_context
+comm_ctx) ;

Data Transfer

[**

* naaice_init_data_transfer:

* Starts the data transfer. That is, posts the write for
memory regions to

+ the NAA.

*

* params:

*  mnaaice_communication_context *comm_ctx:

* Pointer to struct describing the connection and memory
regions .

%

* returns:

* 0 if sucessful , =1 if not.

*/

int naaice_init_data_transfer(struct
naaice_communication_context xcomm_ctx);

/*

* naaice_write_data:

*  Writes memory regions (metadata and input parameters) to the
NAA. Done

* with a ibv_post_send using opcode IBV_WR_RDMA_WRITE or

* IBV_WR_RDMA_WRITE WITH IMM ( for the final memory region).

* params:
*  mnaaice_communication_context *comm_ctx:

* Pointer to struct describing the connection.

* uwint8_t fncode:

* Function Code for NAA routine. Positive, 0 on error.
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*

*

*

*/

returns:
0 if sucessful , -1 if not.

int naaice_write_data(struct naaice_communication_context

scomm_ctx,

uint8_t fncode);

/*

*/

naaice_post_recv_data

Posts a recieve for a memory region write.

It is only necessary to post a recieve for the final memory
region to be

written , that is, the write with an immediate value. RDMA
writes without

an immediate simply occur without consuming a recieve
request in the queue.

The memory region specified in the recieve request is the
MRSP region ;

this is just a dummy value, as the region written to is
specified by the

sender .

params :
naaice_communication_context *comm_ctx:
Pointer to struct describing the connection.

returns:
0 if successful , =1 if not.

int naaice_post_recv_data(struct naaice_communication_context

+comm_ctx) ;

[* %

*

*

naaice_do_data_transfer

Does all logic for the data transfer , including writing data
to the NAA,

wating for the NAA calculation , and receiving the return
data back, in a

blocking fashion .

params :
naaice_communication_context =comm_ctx:

Pointer to struct describing the connection.

returns:
0 if successful , =1 if not.
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int naaice_do_data_transfer(struct naaice_communication_context
+comm_ctx) ;

3.2 Software-NAA API
Setup and Infiniband Work Completions

/>(->e
* naaice_init_communication_context:
* Initializes communication context struct.

*  The dummy software NAA reuses the communication context
struct from the

* host-side APl implementation , but doesn’t use all the fields
in the

* exact same way. Most importantly , the size and number of
parameters

* is not known (and related fields are not populated) until
after the

* MRSP is complete.

* params:

*  naaice_communication_context xcomm_ctx: (return param)

* Pointer to communication context struct to be initialized.

* Should not point to an existing struct; the struct is
allocated

* and returned by this function.

X*

const char =*port:
String specifying connection port, ex. "12345".

¥

*

* returns:
* 0 if sucessful , =1 if not.
*/

int naaice_swnaa_init_communication_context (
struct naaice_communication_context sxcomm_ctx, uintl6_t
port);
[**
* naaice_swnaa_handle_work_completion :
* Handles a single work completion from the completion queue.
* These represent memory region writes from host to NAA or NAA
to host.

* params:

*  naaice_communication_context =comm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if sucessful , =1 if not.
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*/

int naaice_swnaa_handle_work_completion(struct ibv_wc =wc,
struct naaice_communication_context scomm_ctx);

[* %

* naaice_swnaa_poll_cq_nonblocking :

* Polls the completion queue for any work completions , and
handles them if

* any are received using naaice_handle_work_completion .

*  Subsequently , comm_ctx—>state is updated to reflect the
current state
* of the NAA connection and routine.

* params:
*  naaice_communication_context *comm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if sucessful (regardless of whether any work completions
are received),

* =1 if not.

*/

int naaice_swnaa_poll_cq_nonblocking (
struct naaice_communication_context =comm_ctx);

Connection Management

[**

* naaice_swnaa_setup_connection :

* Loops polling for and handling connection events until
connection setup

* is complete. Unlike the base naaice version , does not
require handling

* the address or route resolution events, but does handle the

connection

* requests complete event which is not handled on the host
side .

*

* params:

*  naaice_communication_context *comm_ctx:

* Pointer to struct describing the connection.

*

* returns:

* 0 if sucessful , =1 if not (due to timeout).

*/
int naaice_swnaa_setup_connection (
struct naaice_communication_context xcomm_ctx);

/*
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*/

swnaa connection event handlers:

These functions each handle a specific connection event. If
the provided

event’s type matches the event type of the handler function,
it executes

the necessary logic to handle it.

Subsequently , flags in the communication context are updated
to represent
the current status of connection establishment.

The events handled by these functions are, in order:
RDMA_CM_EVENT_CONNECTION_REQUEST
RDMA_CM_EVENT_CONNECT_ESTABLISHED

Also, the following are handled by naaice_handle_error:
RDMA_CM_EVENT _ADDR_ERROR, RDMA_CM_EVENT ROUTE_ERROR,
RDMA_CM_EVENT CONNECT_ERROR, RDMA_CM_EVENT UNREACHABLE,
RDMA_CM_EVENT_REJECTED, RDMA_CM_EVENT_DEVICE_REMOVAL,
RDMA_CM_EVENT _DISCONNECTED.

params :
naaice_communication_context *comm_ctx:

Pointer to struct describing the connection with events to
handle .
struct rdma_cm_event *ev:

Pointer to event to be checked and possibly handled .

returns:

0 if sucessful (i.e. either the event was the matching type
and was handled

successfully , or the event was not the matching type), -1 if
not.

int naaice_swnaa_handle_connection_requests(struct

naaice_communication_context =comm_ctx,
struct rdma_cm_event *ev);

int naaice_swnaa_handle_connection_established (

struct naaice_communication_context scomm_ctx, struct
rdma_cm_event =ev);

[ % *

*

*

naaice_swnaa_poll_and_handle_connection_event:

Polls for a connection event on the RDMA event channel
stored in the

communication context and handles the event if one is
received .

Simply uses the poll and handle functions above.
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* params:
*  mnaaice_communication_context *comm_ctx:

* Pointer to struct describing the connection.

A

* returns:

* 0 if sucessful (regardless of whether an event is received),
-1 if not.

*/

int naaice_swnaa_poll_and_handle_connection_event(
struct naaice_communication_context =comm_ctx);

YEX:

* naaice_swnaa_disconnect_and_cleanup :

* Terminates the connection and frees all communication
context memory.

* params:

*  mnaaice_communication_context xcomm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if sucessful , -1 if not.

*/

int naaice_swnaa_disconnect_and_cleanup (
struct naaice_communication_context xcomm_ctx);

Memory Region Exchange

[* %

* naaice_swnaa_init_mrsp :

* Starts the MRSP on the NAA side. That is, posts a recieve
for MRSP

* packets expected from the host.

* params:

* mnaaice_communication_context *comm_ctx:

* Pointer to struct describing the connection and memory
regions .

*

* returns:

* 0 if sucessful , -1 if not.

*/

int naaice_swnaa_init_mrsp(struct naaice_communication_context
scomm_ctx) ;

[**

* naaice_swnaa_post_recv_mrsp
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* Posts a recieve for an MRSP message.

* A recieve request is added to the queue which specifies the
memory region

* to be written to (in this case, the MRSP region).

* params:
*  naaice_communication_context xcomm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if successful , -1 if not.

*/

int naaice_swnaa_post_recv_mrsp(struct
naaice_communication_context xcomm_ctx);

[**

* naaice_swnaa_handle_mr_announce ,

* naaice_swnaa_handle_mr_announce_and_request:

*

* Handlers for MRSP packets .

* Processes the contents of a received MRSP packet of the
corresponding type,

* populating relevant wvalues in the communication context.

* params:
*  naaice_communication_context *comm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if sucessful , -1 if not.

*/

int naaice_swnaa_handle_mr_announce (
struct naaice_communication_context xcomm_ctx);
int naaice_swnaa_handle_mr_announce_and_request(
struct naaice_communication_context xcomm_ctx);

YEX:

* naaice_swnaa_send_message:

* Sends an MRSP packet to the remote peer. Done with a
ibv_post_send using

* opcode IBV_WR_SEND.

* params:
*  mnaaice_communication_context *comm_ctx:
* Pointer to struct describing the connection.

* enum message_id message_type:

* Specifies the packet type. Should be one of MSG MR _ERR,
MSG_MR_AAR,

* or MSG.MR_A.

= yint8 _t errorcode:
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* Error code send in the packet, if message_type was
MSG_MR_ERR.

* Unused for other message types.
%

* refurns:

* 0 if sucessful , =1 if not.

*/

int naaice_swnaa_send_message(struct
naaice_communication_context =comm_ctx,
enum message_id message_type, uint8_t errorcode);/**
* naaice_swnaa_do_mrsp
* Does all logic for the MRSP in a blocking fashion.

* params:
* naaice_communication_context xcomm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if successful , =1 if not.

*/

int naaice_swnaa_do_mrsp(struct naaice_communication_context
+comm_ctx) ;

YEX:

* naaice_swnaa_do_mrsp

* Does all logic for the MRSP in a blocking fashion.

*

* params:
* mnaaice_communication_context xcomm_ctx:

* Pointer to struct describing the connection.
%

* returns:

* 0 if successful , =1 if not.

*/

int naaice_swnaa_do_mrsp(struct naaice_communication_context
+comm_ctx) ;

Data Transfer

[* %

* naaice_swnaa_post_recv_datu

* Posts a recieve for a memory region write.

* It is only mnecessary to post a recieve for the final memory
region to be

* written , that is, the write with an immediate value. RDMA
writes without

* an immediate simply occur without consuming a recieve
request in the queue.
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* The memory region specified in the recieve request is the
MRSP region ;

* this is just a dummy value, as the region written to is
specified by the

* sender.

* params:
* mnaaice_communication_context xcomm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if successful , =1 if not.

*/

int naaice_swnaa_post_recv_data(struct
naaice_communication_context xcomm_ctx);

[* %

* naaice_swnaa_handle_metadata

* Updates information in the communication context based on
received

* metadata , which before this call should be available in the

local metadata
*  memory region.

* params:
*  naaice_communication_context xcomm_ctx:

* Pointer to struct describing the connection.
*

* returns:

* 0 if successful , =1 if not.

*/

int naaice_swnaa_handle_metadata(
struct naaice_communication_context =comm_ctx);

[* %

* mnaaice_swnaa_write_data:

*  Writes the return memory region , specified by
comm_ctx—>mr_return_idx , to

* the remote peer. Done with a ibv_post_send using opcode

+ |JBV_WR_RDMA_WRITE_WITH_IMM. The immediate value indicates
an error has

* occured during calculation (nonzero = error).

*

* params:

*  naaice_communication_context =comm_ctx:

* Pointer to struct describing the conmnection.

* uint8_t fncode:

* Function Code for NAA routine. Positive, 0 on error.
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*

*

*/

returns:
0 if sucessful , -1 if not.

int naaice_swnaa_write_data(

struct naaice_communication_context *comm_ctx, uint8_t
errorcode) ;

[ % *

*

*

*/

naaice_swnaa_receive_data_transfer

Handles recieving data from remote peer, blocking until this
is finished .

Information about the data is updated in the communication
context .

params :
naaice_communication_context *comm_ctx:
Pointer to struct describing the connection.

returns:
0 if successful , =1 if not.

int naaice_swnaa_receive_data_transfer(

¥

*

*

*

*/

struct naaice_communication_context =comm_ctx);

Starts the data transfer to the client. That is, posts the
write for return memory region.

params:
naaice_communication_context xcomm_ctx:

Pointer to struct describing the connection and memory
regions.
uint8_t fncode:

error code returned by NAA routine. 0, positive on error.

returns:
0 if sucessful, -1 if not.

int naaice_swnaa_write_data_transfer (

struct naaice_communication_context scomm_ctx, uint8_t
errorcode) ;
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