
NAAICE Middleware API Documentation

Florian Mikolajczak, Dylan Everingham, Hannes Signer
NAAICE AP2

University of Potsdam, Zuse-Institute Berlin

September 4, 2025

Contents

1 Introduction & Motivations 2

2 Middleware API 3
2.1 Datatypes & Structs . 3
2.2 Function Calls . 4

3 Example Program 7

1

1 Introduction & Motivations

This document describes the API for the NAAICE Middleware which integrates a network-
attached accelerator (NAA) into HPC data centers using RoCEv2, allowing for IP-based
remote direct memory accesses (RDMA). In order for this to work, a middleware/com-
munication library was designed to achieve the following goals:

1. Easy integration into HPC applications
The communication details should be transparent to the user, since an application
developer should not deal with communication specifics, but rather concentrate
on the specification of the computation which should be offloaded to the NAA.
Communication details include for example a communication context containing
ibverbs-specific structures such as Infiniband queue pairs or details of memory
region handling.

2. Fast adaption by the HPC community
The middleware library should be easily understood and used by the HPC com-
munity. As such, the popular and well known Message Passing Interface (MPI)
standard will be taken as an inspiration to formulate an NAA middleware, which
will reproduce or reuse functionalities and structures of the MPI standards. We
assume that a middleware with analogies to MPI can be more easily adopted by
the HPC community.

3. Ability for communication-computation-overlap (CCO)
Instead of serialized communication and computation, the aim of the middleware
is to allow both to happen concurrently. For this, non-blocking communication
calls are necessary. Non-blocking communication functions return before the ac-
tual communication i.e. data-transfer is done. The host node can then continue
with some other computation while the NIC continues with the data transfer.

2

2 Middleware API

The middleware consists of only five well-defined functions, which are presented in the
following together with the corresponding data types.

2.1 Datatypes & Structs

Different data structures are used to manage connection establishment, connection sta-
tus, and the memory regions to be exchanged.

Connection Management

1 typedef struct naa_handle {
2 unsigned int function_code;
3 struct naaice_communication_context *comm_ctx;
4 } naa_handle;

The naa_handle is the central data structure for managing the communication context
of the connection. It also contains the function code informing the NAA which kernel
to execute.

1 typedef struct naa_status {
2 enum naaice_communication_state state;
3 enum naa_error naa_error;
4 uint32_t bytes_received;
5 } naa_status;

The naa_status structure contains all status information relating to the connection and
RPC calls. The connection between the host and NAA is modelled as a state machine,
with the current state stored in the state variable. Information about the status of
an RPC call is stored in naa_error. For additional information, the bytes_received
variable records the number of bytes sent back to the host by the NAA.

Memory Region Management

1 typedef struct naa_param_t {
2 void *addr;
3 size_t size;
4 bool single_send;
5 } naa_param_t;
6

Data for offloading is stored in memory regions (MRs), which need to be contiguous
memory for RDMA operations. These MRs are managed in the naa_param_t structure
and are basically defined by the start address and size of the memory region. In addi-
tion, the single_send parameter can be set to true, which controls whether an MR is
only transferred on the first call. This is useful for configuration data, for example. By
default, this option is set to false, so that an MR is transferred with every RPC call of a
connection.

3

Error Codes

1 enum naa_error {
2 NAA_SUCCESS = 0x00,
3 SOCKET_UNAVAIL = 0x01,
4 KERNEL_TIMEOUT = 0x02
5 }

Currently, three values are defined in naa_error. In addition to NAA_SUCCESS (0x00) for
an error-free RPC call, a distinction is made between two error cases. SOCKET_UNAVAIL
(0x01) indicates an error on the side of the NAA’s RoCe stack and specifies that the
kernel requested in the function code is not available. The second error is indicated
by KERNEL_TIMEOUT (0x02) and is returned if the NAA kernel does not terminate after
a user-defined time. In addition to the current values, the values from 0x03 to 0x0f
are reserved for future errors, while the values from 0x10 to 0x7f are reserved for
application-specific errors.

2.2 Function Calls

All routines return an integer of type naa_err. Successful routines return 0 or a positive
integer on failure, indicating the failure reason.

1. Connection Establishment

1 naa_create(function_code, *input_params, input_amount, *output_params,
2 output_amount, *handle)
3

4 IN function_code functionality to be executed on
5 the receiver side
6 IN *input_params array of type naa_params_t for the
7 input memory regions
8 IN input_amount number of input memory regions
9 OUT *output_params array of type naa_params_t for the

10 output memory regions
11 IN output_amount number of output memory regions
12 IN *handle pointer to naa_handle for communication management

int naa_create(unsigned int function_code, naa_param_t *input_params,
unsigned int input_amount, naa_param_t *output_params,
unsigned int output_amount, naa_handle *handle);

• Finding IP address and socket ID for an NAA matching required function code.
Prepare connection, register and exchange memory region information between
HPC node and NAA.

• IP address and socket ID are already known to HPC node. Info is retrieved from
resource management system (Slurm) at creation/deployment of slurm job. User
knows function code for method/calculation to outsource to NAA. Connection to
NAA is done by connection establishment protocol from the Infiniband standard.
During connection preparation, the HPC nodes allocates buffers for memory re-
gions and resolves route to NAA. After connection establishment, memory region

4

information is exchanged between HPC node and NAA. The protocol for this was
designed in NAAICE AP1.

• This method will register the addresses of the parameters with ibverbs as mem-
ory regions, hiding the memory region semantic from the user. All memory re-
gions, for both input and output parameters are announced to the NAA during
naa_create(). Therefore, memory regions can not be changed from input to
output between iterations. Currently, no example has been found where this is
necessary. The handle object was previously returned by the library and includes
information on how to connect to the right NAA. The resource management system
will provide information on the IP of the NAA and socket ID of the NAA.

2. Sending Data

1 naa_invoke(*handle)
2 IN *handle pointer to naa_handle for communication management

naa_invoke(naa_handle *handle)

• Write data (in 1 or more RDMA operations) to NAA and trigger RPC-like behavior.

• Application programmer and NAA programmer have to agree on the size and
meaning of each memory region beforehand. For now, the syntax and semantics of
the transferred data is not explicitly stated.

• Data transfer is done with RDMA_WITH_IMM. If the transfer requires n > 1 op-
erations, n − 1 RDMA_WRITE operations are done. The last writing operation is
RDMA_WITH_IMM, where the immediate data value is the function code.
RDMA_WITH_IMM signals the end of the data transfer to the NAA and initiates calcu-
lations on the NAA (RPC start).

3. Receiving Data

1 naa_wait(*handle, *status);
2 IN *handle pointer to naa_handle for communication management
3 OUT *status result of operation is stored in naa_status

int naa_wait(naa_handle *handle, naa_status *status)

• Check if result data has been written to HPC node.

• Much like MPI_WAIT, the naa_wait call is blocking and polls the completion queue
of the queue pair associated with the data transfer. naa_wait returns, when data
has been written back to the HPC node.

• The call returns with the information on the completed operation stored in the
status variable.

5

1 naa_test(*handle, *flag, *status)
2 IN *handle pointer to naa_handle for communication management
3 OUT *flag indicated whether operation is finished
4 OUT *status result of operation is stored in naa_status

int naa_test(naa_handle *handle, bool *flag, naa_status *status)

• Check if result data has been written to HPC node.

• Much like MPI_TEST, the naa_test call is non-blocking and polls the completion
queue of the queue pair associated with the data transfer.

• A call to naa_test returns flag=true if the operation identified by handle is com-
plete. In such a case, the status object is set to contain information on the completed
operation. The call returns flag = false if the operation is not complete. In this case,
the value of the status object is undefined.

4. Connection Termination

1 naa_finalize(naa_handle *handle)
2 IN *handle pointer to naa_handle for communication management

int naa_finalize(naa_handle *handle)

• Disconnect in an orderly fashion from the NAA and clean up allocated resources.

• In naa_finalize, the connection between HPC node and NAA is cleaned up as
standardized in the Infiniband specification. In addition, resources that were allo-
cated for and during the data transfer are cleaned up. naa_finalize is not called
after each iteration of a given simulation/job, but only once, when the program
terminates and the NAA is no longer needed.

6

3 Example Program

This sample code snippet shows the offloading of vector addition from the client’s per-
spective. The logic of the addition is implemented accordingly on the NAA side. The
call demonstrates both non-blocking waiting (1st RPC call) and blocked waiting (2nd
RPC call).

1 //All data is gathered and sent to the NAA in one go.
2 #include <naaice_ap2.h>
3 #define FNCODE_VEC_ADD 0t
4

5 void *a, *b, *c;
6 a = calloc(64, sizeof(double));
7 b = calloc(64, sizeof(double));
8 c = calloc(64, sizeof(double));
9

10 // define input and output memory regions
11 naa_param_t input_param[2] = {{a, 64 * sizeof(double)},
12 {b, 64 * sizeof(double)}};
13 naa_param_t output_param[1] = {{c, 64 * sizeof(double)}};
14

15 naa_handle handle;
16

17 // establish connection
18 naa_create(FNCODE_VEC_ADD, &input_params, 2, &output_params, 1, &handle) ;
19

20 int flag = 0;
21 naa_status status;
22

23 // transfer data to NAA
24 naa_invoke(&handle);
25

26 // non-blocking check if results are received
27 naa_test(&handle,&flag,&status)
28 while (!flag) {
29 do_other_work();
30 naa_test(&handle,&flag,&status)
31 }
32 process_results(c);
33

34 // set inputs with new data
35 set_inputs(a, 64, b, 64) ;
36

37 naa_invoke(&handle);
38

39 // blocked waiting for RPC to finish
40 naa_wait (&handle,&status)
41 process_results(c);
42

43 // finalize connection
44 naa_finalize(&handle);

7

	Introduction & Motivations
	Middleware API
	Datatypes & Structs
	Function Calls

	Example Program

